

1.まえがき

情報センシング分野では、画像および関連する空間情報 の入力と処理にかかわる技術を対象としている.10年余り の間に、CCDからCMOSへの転換がなされ、高感度化・ 多画素化・ディジタル化・高機能化が劇的に進んだ.この 3年間においてもたゆまぬ技術開発が行われ、この進化の 流れはさらに加速している.

中でも、イメージセンサは、現在、スマートフォンカメ ラ用の小型の光学フォーマット1/3.2インチや1/2.8インチ から、コンパクトカメラ用の1/2.3インチや1/1.7インチ、 さらには大型カメラ用のAPS-Cや35mmフルサイズまで、 撮像受光面積として実に50倍以上異なるものが使用され, 大いに多様化が進んだ.

小型イメージセンサにおいては、画素サイズが1µm角程 度まで縮小され、また、光導波路構造や裏面照射構造を導 入され量子効率がほぼ100%に達した.最近では、受光部 と信号処理部を別チップとした積層型イメージセンサも登

- †1 東北大学 大学院工学研究科
- †2 アプティナジャパン合同会社
- †3 キヤノン株式会社 デバイス開発本部
- †4 東北大学 大学院工学研究科
- †5 北海道大学 大学院情報科学研究科
- †6 東京理科大学 工学部第一部 電気工学科
- †7 埼玉大学 大学院理工学研究科
- †8 静岡大学 電子工学研究所 ナノビジョン研究部門
- †9 NHK 放送技術研究所
- †10豊橋技術科学大学 エレクトロニクス先端融合研究所
- †11 浜松ホトニクス株式会社 電子管事業部

"Image Electronics Information Sensing" by Shigetoshi Sugawa (Graduate School of Engineering, Tohoku University, Miyagi), Isao Takayanagi (Aptina Japan, LLC, Tokyo), Hidekazu Takahashi (Device Technology Development Headquarters, Canon Inc., Kanagawa), Rihito Kuroda (Graduate School of Engineering, Tohoku University, Miyagi), Masayuki Ikebe (Graduate School of Information Science and Technology, Hokkaido University, Hokkaido), Takayuki Hamamoto (Faculty of Engineering Division I, Tokyo University of Science, Tokyo), Takashi Komuro (Graduate School of Science and Engineering, Saitama University, Saitama), Keiichirou Kagawa (Research Institute of Electronics, Shizuoka University, Shizuoka), Hiroshi Ohtake (Science and Technology Research Laboratories, NHK, Tokyo), Daisuke Akai (Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Aichi), Hideyuki Suzuki (Electron Tube Division, Hamamatsu Photonics, Shizuoka)

場し、レンズ一体型実装技術の進化と併せ、ますます撮影 ユニットの体積を縮小させつつある.

また、高い解像度の静止画撮影だけでなく、フルハイビ ジョンの動画撮影も当たり前のように行えるようになっ た. 暗時ノイズも、1電子程度のレベルまで低減された.

十二分な画素数を有するイメージセンサと,後段のDSP およびソフトウェアによる高度な信号処理との連携も進 み、欠陥・ばらつき・ノイズの補正、レンズの収差の補正 などはもとより、光学ローパスフィルタを使用しないでも 偽色やモアレが抑制された高解像度高画質カメラや,像面 位相差 AFを組込んだミラーレスカメラなどが次々と登場 し,新しい流れが始まっている.

さらに,超高速撮影,ナノフォトニクス,バイオ計測, 赤外線、X線などの用途に用いられる画像入力デバイス・ 機器においても、大いなる技術的な進展が見られた.

本稿では、情報センシング研究会の委員が分担し、目ま ぐるしく発展し続けている情報センシング分野の技術につ いて、ここ3年の進展をまとめる. (須川)

2. イメージセンサ

2.1 画素微細化と多画素化

携帯電話カメラ用のイメージセンサは、出荷数が2013年 には20億個を超えると予測され、イメージセンサの出荷個 数ベースで全体の約7割を占めている.撮像系に小型であ ることが要求される携帯電話は、イメージセンサの画素微 細化技術を後押ししている最大のドライビングフォースで ある. 最近の携帯電話カメラにおける多画素化への要求は 引き続き高く,現在の画素数は2013年では500万画素から 800万画素が中心となった. 2014年には1,300万画素のカメ ラが多く搭載されるものと予想されている. 画素サイズは 1.1µmが主流になりつつある.

携帯電話向けカメラでは、CMOSイメージセンサがその ほとんどを占めている. 1.1µm 画素では主に裏面照射 (Back Side Illumination: BSI) 型が採用されている. BSIを 採用することで、CMOSイメージセンサで必須の画素内部 の読出しトランジスタや金属配線による開口率のロスを回 避し、微細画素における感度の確保を実現している.

映像情報メディア学会誌 Vol. 67, No. 11, pp. 972~982(2013)

携帯電話カメラの画素サイズは、2005年以降,平均的に 2年毎に約80%の率で画素サイズ縮小が進んでいる.この 傾向が今後も継続すると、2015年は0.9µm 画素へ移行する と予想される.BSI 方式の0.9µm 画素についてはすでに各 社から試作結果が報告がされており、フォトダイオードに 関しては現在のBSI 技術をベースに実現可能と考えられ る.また、カラーフィルタに関しても技術的見通しが立っ ていると報告されている¹⁾.

その一方、カメラの高感度化に対しての要求は強く、色 ノイズも含めたカメラ感度の向上は1.1um 画素も含めて大き な課題となっている.2013年のイメージセンサワーク ショップでも、感度改善について複数の発表が行われた. Samsungは、マイクロレンズを形成した後に形状を保ちな がらエッチバックすることで、カラーフィルタにレンズ効 果を持たせる技術を発表した²⁾.分光特性を維持したままで センサ表面からフォトダイオード表面までのスタック高さ を15%減少させることができ、1.12µm BSI 画素のSNR10 値 を1551xから1401xに改善した. Aptinaは、フォトダイオー ド構造の改善により、従来構造よりも光電変換部厚みを 30%拡大し感度の増加と画素間クロストークの低減を行うこ とで、1.1um BSI 画素の SNR10 値を 125 *l*x まで改善した³⁾. 同時に0.9µm 画素に向けてのフォトダイオード設計方針や 飽和信号電子数の確保についてのアイデアも発表した. TSMCの発表では、カラーフィルタの分離領域に有機低誘 電率材を充填してライトガイドを形成し、さらに、下部の 金属配線のグリッド状のレイアウトを最適化することで, 金属配線部にもライトガイド性を持たせる方式が報告され た⁴⁾. 1.1µm 画素による評価で従来画素に対して16.8%の SN比の向上が得られている.

また、今回のワークショップでは大きく取り上げられな かったが、微細画素における輝度感度を向上させるため、 従来のRGBフィルタ構成に対して透明画素を導入するなど の動きが各社で見られている.このような非RGBフィルタ に対応した色分離方式や画素間の混色対策など、今後の技 術動向にも注目したい.

研究テーマとしては、画素微細化と高速読出し技術がさら に発達することを想定し、1画素を光子検出ドットとして用 いたイメージセンサのコンセプトを、Quanta imagingと題 してEric Fossum氏が解説した⁵⁾.フォトン入射あり、なし の判定しかできないバイナリー画素でも、ある程度のウィ ンドウ内での統計処理により輝度を推定することでイメー ジセンサとしての機能が実現できる、というアイデアであ る. 究極の画素微細化技術として興味ある発表であった.

2.2 高感度化低ノイズ化

裏面照射型CMOSイメージセンサの実用化によって,高 感度化に関してしばらくは落ち着くものと考えられていた が,良い意味での期待を裏切って,高感度化がさらに進ん

(髙柳)

だ3年であった.一方のノイズに対しては改善の余地がま だまだあるため,さまざまな技術が提案された時期でも あった.

高感度化に関しては,積層導波路構造⁶⁾,有機膜積層型 イメージセンサ⁷⁾,大面積イメージセンサ⁸⁾等が提案され た. 高感度化のために, 配線層領域に導波路構造を設けた 技術はすでに実用化されているが、カラーフィルタ領域で の入射ロスを減らすためにカラーフィルタ内にも導波路構 造を設ける新たな構造が提案された.またSiを用いている 限り、やがては量子効率に対する限界が来るため、光電変 換材料にSi以外の有機光電膜をSi表面に積層する技術が提 案された.かつては高感度に関しては裏面照射型が絶対有 利であるという考えが優勢であったが、これらの表面積層 型の提案によって必ずしも表面照射型が裏面型に劣るとい うことではなくなってきた. 従来の裏面照射型は色分離に 難があったため、実際には画素分離に対して何らかの工夫 をせざるを得なく、必ずしも100%の光を有効に利用して いるわけではなかった. それに対して, 色分離に勝ってい る表面照射型に導波路構造を用いることによって、1.4µm 画素サイズにおいては裏面照射型以上の量子効率を実現さ せることが可能となった. 当時は更なる微細化は難しいの ではないかと疑問視されていたが、その解決策として、有 機光電膜をSi上に積層して, さらにその上に導波路型カ ラーフィルタを設けた有機積層型イメージセンサが提案さ れることになった. 単に感度が高いだけのイメージセンサ でなく、飽和電荷数に関しても特筆すべき値を達成してい る、ノイズに対しても、後述するフィードバックノイズ キャンセラを搭載することで低ノイズ化を図っている.こ の構造が実用化すると、0.9µm 画素においても裏面照射型 以上の感度が実現されることになるため、今後の進展が楽 しみな技術の一つとなっている.一方,近年の画素微細化 に逆行して、画素サイズを160µmに巨大化することで超高 感度を達成させたウェハサイズイメージセンサが発表され ている. チップサイズは、300mmウェハサイズから作成 できる最大のサイズであり、単結晶Siウェハとしては世界 最大となるチップである. このイメージセンサを天文分野 へ応用することで、今まで不可能であった超高感度動画撮 影が可能となり、新たな宇宙現象の解明が期待されている. このように、イメージセンサの高感度化は科学技術の発展 にも貢献している.

微細画素での大きな課題となっているRTS (Random Telegraph Signal) ノイズに関して,大規模TEGによる統計 的な解析⁹⁾ やトランジスタ形状による改善¹⁰⁾が報告されてい る.暗電流や白点傷の原因となっている素子分離構造に関し ては長年の課題でもあり,LOCOS(Local Oxidation of Silicon) やSTI (Shallow Trench Isolation) 以外にPN接合分離となる フラット分離構造¹¹⁾が提案された.拡散層分離であるため, 構造的に段差がなく,Si界面の歪みが抑制されるため,優 れた暗電流特性を示す.耐圧的に難があると思えるが,低 電圧動作である微細画素イメージセンサにとっては問題に ならないため,微細画素イメージセンサとしては優れた素 子分離法と言える.前述した有機積層膜を実現する上で重 要になってくるのは,3Tr構造でリセットノイズ(kTCノ イズ)を低減させる技術であり,従来のカラムフィード バックアンプノイズキャンセル回路の発展となる技術¹²⁾が 提案された.画素でのノイズ低減以外にオンチップAD回 路でのノイズ低減技術¹³⁾に関しての提案もなされている. PMOSキャパシタを用いたカラムノイズキャンセル回路と 自己差動オフセットキャンセルパイプラインSAR-ADCを 用いることで,優れた読出しノイズを達成させている.今 後,画素性能を最大限に引き出すためは,画素以降のノイ ズ低減が重要になってくると思われる.

イメージセンサの高感度化と低ノイズ化の恩恵により, 画素微細化が著しいスマートフォンでも,現在では高画質 撮影が可能となってきている.ただし,すべてのユーザが 満足しているかというとそうではなく,高感度化,低ノイ ズ化,高解像度化,高ダイナミックレンジ化に対しての要 求は留まるところを知らない.今後は裏面照射型の完成度 の向上,有機積層膜を含めた表面照射型の巻き返しが予想 される.ユーザからの要求がある限り,イメージセンサの 高感度化と低ノイズ化はこれからもますますの進展を続け るであろう. (高橋)

2.3 高速化・広ダイナミックレンジ化

スーパーハイビジョン向け等イメージセンサの多画素化 に伴い、イメージセンサからのデータ出力の高速化が求め られている.ここでは、列並列の読出し回路技術の進展に よる多画素・高出力データレートイメージセンサの提案が みられた.

画素領域上下に列並列配置されたシングルスロープ型 A/D変換器を有するCMOSイメージセンサでは、上位5 ビット・下位9ビットのカウント速度2.376GHzの複合カウ ント回路と16チャネルの出力インタフェースを搭載し、画 素サイズ4.2µm角,有効画素数8192^H×2160^V(有効1,770 万画素)において階調12ビット,撮像速度120fpsを達成し ている¹⁴⁾.また,画素領域上下に列並列配置された2段サ イクリック A/D変換器を有する CMOS イメージセンサが 報告された¹⁵⁾.速度と消費電力のトレードオフを解消する ためにサイクリックA/D変換器を2段構成としてパイプラ イン並列駆動し、1段目のA/D変換器に増幅機能を持たせ ている.加えて、96チャネル並列LVDS出力インタフェー スを用いて51.2Gbpsのデータレートを達成し、画素サイズ 2.8μm角(2画素共用),総画素数7808^H×4336^V(有効3,300 万画素)において階調12ビット,撮像速度120fpsを達成し ている.

また,撮像速度1Mfpsを超えるオンチップメモリーを有 するバースト撮像型の高速イメージセンサでは以下の三つ の方式に関する提案がなされた.

画素内に信号記録117コマ分のリニアCCDメモリーを有 する画素ピッチ43.2µm,画素数362^H×456^VのCCDイメー ジセンサでは,裏面照射型を採用し,開口率を100%とし ながらメタル配線の抵抗を低減することで,撮像速度 16Mfpsを達成している¹⁶⁾.

画素内に信号記録180コマ分の2次元配置CCDメモリー と、画素出力部にFD (Floating Diffusion)を用いた電荷電 圧変換機能を有する画素ピッチ30µm、画素数924^H×768^V のCCD/CMOS混載型イメージセンサが提案され、バース ト撮像モードにおいて2Mfpsを、84並列アナログ出力を用 いた連続撮像モードにおいて1.18kfpsを達成している¹⁷⁾.

開口率と記録コマ数のトレードオフを解消するために画 素領域の上下にメモリー領域を配置し,画素毎に128個の アナログメモリーを有する画素ピッチ32µm,画素数 400^H×256^VのCMOSイメージセンサが提案された¹⁸⁾.32 本の並列画素出力線を適用して画素読出し時間を短縮し, バースト撮像モードにおいてフル画素で記録コマ数124コ マ,10Mfpsを,ハーフ画素で256コマ,20Mfpsを,また, 40並列のアナログ出力を用いることで連続撮像モードにお いてフル画素で7.8kfps,ハーフ画素で15kfpsを達成して いる.

広ダイナミックレンジ (DR) イメージセンサの開発も継 続して行われている.

4トランジスタ型画素にスイッチと容量素子を追加し, 高低二つの電荷電圧変換ゲインを選択可能とした画素サイ ズ4.78µm角,有効画素数4928^H×3280^VのCMOSイメージ センサが提案された¹⁹⁾.飽和電荷量は高低ゲインでそれぞ れ16,50keである.画素内の全トランジスタをリング型 で形成し,素子分離にSTIを用いていない.暗電流は60℃ において17e/sである.

また,列回路に30倍と1倍の高低二つのゲインを持つア ンプとそれぞれに接続したA/D変換器を設置し,同一の水 平ブランキング期間に二つのゲイン信号を得る構成の CMOSイメージセンサでは,グローバルシャッタ機能を有 する5T 画素構成で,画素サイズ6.5µm角,有効画素数 2048^H×1144^Vのものが報告された²⁰⁾.ローリングシャッ 夕時の撮像速度100fpsにおいて暗時ランダムノイズ1.1e⁻, 飽和電荷量42ke⁻, DR92dBを達成している.

また、グローバルシャッタ機能を有するCMOSイメージ センサの飽和電荷量拡大に関する進展もみられた.

画素内に電荷完全転送が可能なアナログメモリー(MEM) を有するCMOSイメージセンサが提案され、蓄積期間中に PDの高輝度信号をMEMに中間電圧にて部分的に転送し、 露光終了後にMEM部の信号をFD部に、PDの信号を MEM部に転送して読出しを行うことで、kT/Cノイズが重 畳しない信号読出しを実現している²¹⁾.画素サイズ 5.86µm角,有効500万画素時に暗時ランダムノイズ4.8e⁻と 飽和電荷量67.7ke, DR83dBを達成している.

画素内に横型オーバフロー容量 (LOFIC: Lateral Overflow Integration Capacitor)を付加したグローバルシャッタCMOS イメージセンサが提案され、画素縮小に伴う飽和電荷量の低 減を解消した効果が報告された²²⁾. PDと転送ゲートと介し て接続する信号保持拡散層 (SD) にそれぞれスイッチを介 してFDとLOFICを接続した、暗電流と飽和電荷量のト レードオフ解消に有利な画素構造を採用している.4画素 共用時に画素ピッチ2.8µm、有効画素数1328^H×1029^Vにお いて、飽和電荷量55ke⁻、PDとSDの暗電流それぞれ83.3、 58.3e⁻/sを達成している.

高速度・高感度・低ノイズ・高飽和性能といったイメージセンサの基本性能は、多画素化、グローバルシャッタ化などの機能の付加とも合わせ今後ともさらなる性能改善が 期待される. (黒田)

2.4 回路技術 (A/D 変換等)

イメージセンサの高解像度化・高速化に合わせ、センサ 用のカラム A/D変換技術の研究開発も進んでいる.センサ 研究開発における重要な要素として、低ノイズ、高速動作、 小面積、線形性(特に微分線形直線性 DNL: Differential Non Linearity),低電力が上げられる.

従来,カラム A/D変換器として,小面積でシンプルな回 路構成を持つシングルスロープ型 A/D変換器が使用されて きた.しかしながらシングルスロープ型は,精度がnビッ ト上昇するごとに,2ⁿ倍の変換時間を要する.そのため, さまざまな高速化手法が報告されてきた.

まず、シングルスロープ型構成を変えずに高速化するも のとして、センサにPLL (Phase Locked Loop)を搭載する ものが報告された. PLLにより高速クロックを生成し、シ ングルスロープ型 A/D変換器を高速駆動するものである. また同時に、この方式を用いたディジタル相関二重サンプ リング (CDS: Correlated Double Sampling)が提案された. 4トランジスタ画素方式のリセット時・信号読出し時の信 号値を Up-Down カウンタで減算することで、信号出力を 得る. 読出しアンプ部のアナログ CDSを併用することで、 画素部とアンプ部の雑音成分を二段階で除去することがで きる. この方式は改良が進み、2011年において、2.4 GHz のクロック生成、下位ビットカウンタのカラム間での統合 動作、上下エリア分割、4ch高速 I/Fを用いることで、 1,770万画素、120fps、34.8Gbps出力の高速動作を実現して いる¹⁴.

また,パイプライン型A/D変換器の要素ブロックを繰り 返し使用し,1ビットごとのA/D変換を行うサイクリック 型,分圧容量によるD/A変換器による1ビットごとの生成 電圧と信号値と比較する逐次比較型も,カラムA/D変換器 としての改良が進んでいる.サイクリック型は,2012年に おいて,2ステージをパイプライン駆動することで,3,300 万画素,120fps,51.2Gbpsの実現している²³⁾.逐次比較型 は、*n*ビット精度に対し、2^{*n*}ごとの容量比がD/A変換に必要となるが、下位・上位ビット比較用容量の直列接続により、容量比の問題が改善できる。イメージセンサ用では、容量に与える参照電圧を制御することで、容量比を改善している。2013年において、1,420万画素、80fpsである²⁴⁾. ΔΣ型変換器およびその構成を生かした画像圧縮の報告も行われている^{25) 26)}.

近年のカラム A/D変換器の新たな構成として、従来構成 を組合せたハイブリッド型の報告も増えてきている. 上 位・下位ビットステージを異なる回路構成でA/D変換を行 う.シングルスロープ型での量子化誤差は、単位クロック とPWM信号の時間的なズレとなる. そこで, 遅延器や複数 位相クロックを用いた時間量子化器 (TDC: Time to Digital Converter)で、量子化誤差を再計測する方式が報告されて いる.この方式では、下位TDCのビット精度nを適切に設 定することで、面積増加を抑えつつ2ⁿ倍の高速化を実現で きる^{27) 28)}.逐次比較型とシングルスロープ型の併用も有効 である.この方式では、上位ビットを逐次比較型で変換し、 下位ビットをシングルスロープ型で変換する²⁹⁾.同様に逐 次比較型のビット精度nを適切に設定することで、2ⁿ倍の 高速化を実現できる. サイクリック型では、上位ビットに 折り返し型 A/D変換器との併用が報告されている³⁰⁾.折 り返し型では、上位ビットに対応する信号範囲ごとに、中 間信号電圧が折り返されて出力される. その中間信号電圧 を、サイクリック型の下位ビットA/D変換を行う. 2012 年において, 80µVrmsの低ノイズ化, ダイナミックレンジ 82dB, 13から19ビット精度を実現している.

CMOSイメージセンサは、3次元集積化も報告され始め、 各層のプロセスに合わせたアナログ要素とディジタル要素 の分離も議論されている³¹⁾.また、センサ要素をブロック ごとに区切り、そのブロックの下層を貫通電極(TSV: Through Silicon Via)で接続し、下層にA/D変換器を積層す る構造の検討も行われている。この方式に対するA/D変換 器構成についての議論・報告もなされている³²⁾. (池辺)

2.5 高機能化

高品質な画像を取得するだけでなく、画像処理システム 等への応用に向けたさまざまなイメージセンサが開発され ている.中でも、イメージセンサから被写体までの距離や 被写体の形状を取得するための3次元イメージセンサの検 討が盛んに進められている.その多くは、システム側から 近赤外光を投げて、その反射光の情報を用いて距離情報を 取得するものである.TOF (Time-of-Flight) 法のためのイ メージセンサとして、DOM (Draining-Only Modulator)を 用いた新しい画素構造が提案されている³³⁾.0~50mmの 範囲を平均210µmの分解能で計測できる.光切断法のため のイメージセンサとして、画像中に光があたっている部分 が狭いことに着目し、効率よくその座標を出力する機能を 持ったものが検討されている³⁴⁾.パターン光投影法のため のイメージセンサとして,投影パターンをアップダウンカ ウンタにより検出する機能を持ったものもある.

画像認識のためにフィルタリング機能を有するイメージ センサの検討が行われている.動作認識等で利用される CHLAC (Cubic High-order Local Auto Correlation)を毎秒 1,000 フレームで求めることのできるイメージセンサが検討 されている³⁵⁾.フィルタリングのパターンを変更すること で,CHLAC以外の特徴抽出も可能である.アナログ電流 モード回路で自己相似演算が可能なイメージセンサが検討 されている³⁶⁾.フィルタのサイズが可変で,毎秒数百フ レームで任意のフィルタ演算ができる.異なる電子シャッ タパターンで電荷を蓄積する機能を有するイメージセンサ を活用し,シャッタパターンとの時間相関処理により,毎 秒数百 M フレームで撮像した画像を合成することが検討さ れている³⁷⁾.その他にも,カラーSi網膜における色の恒常 性について検討したものがある.

一つの撮像面を複数に分割して活用するイメージセンサ が検討されている.イメージセンサを八つの領域に分割し, それぞれに読出し回路や出力線を用意したものがある³⁸⁾. 各領域が異なるフレームレートや蓄積時間で独立して撮像 でき,車載用画像処理システムなどに応用できる. TOMBO (Thin Observation Module by Bound Optics) と 呼ばれる,一つのイメージセンサにレンズアレイを組合せ て分割して撮像するカメラの検討が進んでいる³⁹⁾.広角撮 像や画角を可変にした撮像ができる.

グローバルシャッタ機能を有するCMOSイメージセンサ の検討が引き続き行われている.高速に動作する被写体の 歪みを抑えるだけでなく、多眼のイメージセンサを用いた システムで画像合成をする際には有効である.その他にも、 天体観測や医療などに用いられる大型のイメージセンサの 検討が行われている.20cm角以上のイメージセンサが開 発されており⁴⁰⁾、タイリング技術の導入によりさらなる大 型化が可能となっている.

コンピュテーショナルフォトグラフィと呼ばれる,後段 での演算を前提とした撮像方式に向けたイメージセンサの 検討が行われている.今後,3次元LSI構造の実用化によ り,高機能化がさらに進むものと考える. (浜本)

2.6 画像処理

ディジタルカメラなどの製品においては、イメージセン サで取得した画像がそのまま出力されるのではなく、内部 で画像処理が施され、人間が観るのに適した画像に変換し たのちに出力される⁴¹⁾.基本的な画像処理には、デモザイ ク処理、ノイズ除去、シェーディング補正、歪み補正、階 調・色補正、手ぶれ補正などがある.これらの多くは撮像 系の制約を後処理によって取り払うことが主目的となって いる.

一方,撮像後に画像処理を行うことを前提とした新しいセンシング手法が数多く提案されている.これらは計算(画像

処理) によって初めて画像が生成されることから、コンピュ テーショナルフォトグラフィと総称されることもある⁴²⁾.

例えば、メインレンズと撮像素子の間にマイクロレンズ アレイを備えているFocused Plenopticカメラは、昆虫の 眼で見たような複眼画像が撮像できる.これを画像処理す ることで、異なる距離に焦点があった画像を生成すること ができる.従来の補間を用いた方式では解像度が低いとい う問題があったが、複眼画像の取得過程の逆変換により解 像度を改善する手法が提案された⁴³.

また、レンズに位相マスクを挿入して撮像した画像に画 像復元処理を施すことで、被写界深度が拡大する Wavefront Codingという方式がある.この方式において、 二眼カメラ画像のステレオマッチングにより取得した距離 情報を用いることで、従来よりも高精度な画像復元ができ る技術が開発された⁴⁴⁾.

複数台のカメラで撮影した画像を合成して,自由な視点 から見た映像などを生成する技術も開発されている.合成 画像を生成する際に超解像技術を用いることで,解像度の 高い自由視点映像を生成する技術が開発された.GPUによ る並列実装により,160×120画素の入力画像4枚から 320×240画素の超解像自由視点合成画像1枚を130msで生 成している⁴⁵⁾.

カメラを複数台用いる代わりに、一つのイメージセンサ にレンズアレイを組合せることで多眼化を実現しているシ ステムもある⁴⁶⁾.さらに、レンズ単位で異なる方向をもつ プリズムミラーを取り付けることで、広角カメラや狭角・ 広角が混在したカメラを小型・薄型で実現する方法が提案 された⁴⁷⁾.

広ダイナミックレンジ画像や高フレームレート動画像に 対する画像処理技術も研究されている.広ダイナミックレ ンジ画像のレンジ圧縮には,局所ヒストグラム平均化手法 がよく使われるが,演算量や画質の面で問題があった.そ こでヒストグラム演算の高速化や画質制御,ハロー効果の 抑制などを行う手法が提案されている⁴⁸⁾.また,高フレー ムレート下で得られる時間軸方向に密な撮像情報を利用 し,低フレームレートで高空間解像度の画像を復元するシ ステムが検討されている.前フレームの動き推定結果から 現フレームの動きベクトルを予測することで,動き推定の 精度向上を図っている⁴⁹⁾.

暗闇で撮影した映像に対し,画像合成により画像を鮮明 化する技術も提案されている.ベイズ推定の枠組みを用い ることで,対象運動と参照画像の両方を同時に推定してい る.被写体照度0.01/x以下の暗闇環境で撮影した映像に対 し,動き推定と画像合成が実現されている⁵⁰⁾. (小室)

2.7 特殊機能(ナノフォトニクス,バイオ計測等)

近年,イメージセンサのバイオ応用が進んでいる.単に 従来の顕微鏡をディジタル化するだけでなく,レンズを利 用しないオンチップ顕微鏡が多く研究されている.また,

映像情報メディア学会誌 Vol. 67, No. 11 (2013)

顕微鏡に搭載するイメージセンサであっても,蛍光寿命や 蛍光相関分光といった付加機能をもつイメージセンサが開 発されている.また,ナノフォトニクスのイメージセンサ への適用も研究が進められている.従来の光学薄膜理論の 適用だけでなく,サブ波長構造や,プラズモニクスのよう にフォトンと金属電子との相互作用に基づく受光素子が現 れてきている.

lab-on-chip, µTAS (Micro-Total Analysis System), 生体 埋込み等の応用を想定し、レンズを用いずにイメージセン サのごく直近を観察する、レンズレス顕微鏡が研究されて いる.レンズレス顕微鏡には、大きく分けて、(部分)コ ヒーレント光を用いたホログラフィック方式と、インコ ヒーレント光による近接方式がある.ホログラフィック方 式では, 画素ピッチが再構成後の画像の空間分解能を決め るため、低コヒーレンスの照明光源を動かし、複数のホロ グラムを撮影することで, 分解能の制約を解決する方式が 提案されている⁵¹⁾.24mm²という広い視野に対して,空間 分解能0.6µmという高い分解能を達成している.近接撮影に おける蛍光像の空間分解能を高めるために、画素単位に遮 光井戸を設けることが試みられている.センサ上に500nm 厚の蛍光フィルタを形成し、その上に厚さ60umのSi製の遮 光井戸アレイを形成した例が報告されている⁵²⁾.この場合, 2×2画素に一つの遮光井戸が対応している.最近では,遮 光井戸の中に蛍光フィルタ材料を充填し、5.6μmピッチの画 素単位で厚さ6µmの遮光井戸が作られている⁵³⁾.SU-8フォ トレジストを鋳型としてニッケル電鋳により微細構造を実 現している.空間分解能13µmが達成されており、センサ上 での長期間の細胞培養が実証されている. オンチップの DNAマイクロアレイ検出などの応用を狙い、SPADを用い た全ディジタル式蛍光寿命センサも開発されている. タイ ムウィンドウをスライドさせることで、ジッタ230ps、計測 可能時間長9.6nsで、128×128画素の蛍光寿命イメージング を行っている54).

顕微鏡用イメージセンサとして,蛍光寿命顕微鏡,共焦点 顕微鏡,蛍光相関分光顕微鏡などが開発されている.蛍光 寿命顕微鏡には,前述の文献54)のように,SPADを利用し たシングルフォトンカウンティングに基づく方式の他に, 電荷を高速に変調することで,画素レベルでタイムウィン ドウ内の電子を蓄積して検出する方式がある.横型電界制 御により電荷を排出するDraining Only Modulation (DOM) 方式により,センサ自身の時定数1.73ns (波長440nm)が報 告されている⁵⁵⁾.また,CCDを用いた蛍光寿命イメージセ ンサも開発されている⁵⁶⁾.画素毎に一つのフォトゲートと 二つの蓄積部をもち,80MHzで電荷を振り分ける.読出し 経路にEM-CCDを設け,感度を高める試みがなされている. この他,ピンホールアレイの機能をイメージセンサに持た せたマルチビーム共焦点顕微鏡センサ⁵⁷⁾や,SPADを応用 した蛍光相関分光顕微鏡センサ⁵⁸⁾が開発されている.少し 毛色の異なる顕微鏡センサとして,波面イメージセンサが ある⁵⁹⁾. イメージセンサ上に6µmの円形開口を11µmピッチ で配列したアルミ薄膜を配置している.一つの開口には複 数画素が対応する.円形開口を透過した波面は自己収束効 果によりセンサ上にスポットを形成し,波面の傾きにより スポット位置が変化する.その変化量から,光の強度に加 え,振幅と位相が画像として得られる.

ナノ構造により、光検出器の波長や偏光特性を制御する方 法が活発に行われている.SiO上のSi薄膜を介して、両側を 金で挟まれたフィン状のSi導波路を用いている.フィンの 幅を500~600nmと変化させることで、強い吸収共鳴が生じ、 光の吸収波長ピークが730nm~800nmの間で変化すること が示されている⁶⁰⁾.Siの吸収が少ない長波長であっても、 大きい吸収を実現できると期待されている.また、光学干 渉フィルタの技術を適用し、センサ上に直接600~1,000nm の波長域に対して、32種類の透過波長ピークをもつ半値全 幅10nm程度のフィルタを任意の配置で作製した例も報告さ れている⁶¹⁾.

偏光子をセンサ上に集積する方法も研究されている. 140nmピッチ・70nm幅のアルミナノワイアが,画素毎に4 種類の方向でセンサの酸化SiO 膜上に形成されている⁶²⁾.可 視光に対して,消光比58が得られている.65nm標準CMOS プロセスを用いた偏光フィルタとして,700~800nmの波長 域に対して約20dBの消光比が報告されている⁶³⁾. (香川)

3.カ メ ラ

3.1 放送用カメラ・高精細カメラ

デジタル放送への完全移行が完了し、高画質なハイビ ジョン映像が標準映像として広く浸透してきた.また、国 際的にも放送のディジタル化とともに、インターネットを はじめとする通信との融合が急速に広がりをみせており、 より低価格で高性能なハイビジョン機器や、4K/8Kと呼ば れる超高解像度の機器の開発が進められている.

放送局内の映像システムは,ほぼハイビジョン化され, 映像素材・コンテンツの管理や制作,送出などの業務フ ローを効率的に行い,かつ,広く普及したネットワークを 有効に活用するために,テープベースからファイルベース への移行が進んでおり,放送用カメラにおいても,高画 質・高圧縮技術の進展と,半導体メモリーや記録メディア の大容量化により,テープレスカメラが主流となっている. また,カメラの出力は多様なフォーマット(HD: 1080/59.94i, 29.97p, 23.98p, 50i, 25p; SD: 480/59.94i, 29.97p, 23.98p, 576/50i, 25p) へ対応するとともに,映画 製作用途に向けて,フィルムライクなガンマ特性を選択で きるなど,高機能化が進んでいる.

放送用カメラに用いられている撮像デバイスは、従来から、ハイエンドカメラには耐スミア特性に優れ、感度も高い2/3型220万画素FIT-CCDが用いられ、スミア-135dB、

感度2,000 *l*x F10 (*S*/*N* 54dB) が標準的な性能であったが, 近年, プログレッシブIT-CCDと16ビットA/Dコンバータ を採用した感度2,000 *l*x F11 (*S*/*N* 60dB) のカメラが開発 市販されている⁶⁴⁾. このカメラは,高速な出力フォーマッ ト3G-SDIに対応し,1080/119.88i信号から1080/59.94iの2 倍速信号と1080/59.94iの標準信号を同時に出力する機能を 持っており,高い運用性を実現している.また,CMOS撮 像デバイスの標準カメラへの採用も進んでおり,2/3型220 万画素CMOS撮像デバイスを搭載し,感度2,000 *l*x F12 (*S*/*N* 59dB) とCCDを超える感度も実現されている⁶⁵⁾.ま た,業務用小型カメラでは,1/4.7型268万画素BSI (裏面 照射) CMOSを搭載した高画質で高感度な3板式カメラも 開発されるなど,より一層の小型・低価格化,高画質・高 機能・高性能化が進められている⁶⁶⁾.

多様なコンテンツ制作に対応するため、ハイスピードカ メラの高性能化も進んでおり、感度を4倍向上させたフル ハイビジョンで1,000fpsの速度で撮影できるカメラや、フ ルハイビジョンで最大2,000fpsに対応したカメラなどが開 発され、ドラマやスポーツ中継などで多用されている⁶⁷⁾⁶⁸⁾. また、国際宇宙ステーションから地球の夜景やさまざまな 自然現象を撮影するために、小型で超高感度な宇宙用超高 感度カメラが開発された⁶⁹⁾. このカメラは、2/3型約100 万画素EM-CCD (Electron Multiplying CCD)を用いた単板 カメラで、電子増倍率としては1,000倍まで設定が可能で ある. このカメラの開発により、これまで動画撮影が困難 であったオーロラに代表される地球と宇宙の境界領域にお けるさまざまな自然現象を、生中継で放送することに成功 した.

ハイビジョンを超える超高精細映像(UHDTV: Ultra High Definition TV)や、3Dなど新しい映像システムの開 発も活発化している.この背景には、超高精細映像システ ムがITU-R(国際電気通信連合)でUHDTVとして勧告され、 2012年8月に第1段階として、4K(3,840×2,160)、第2段 階として、8K(7,680×4,320)が正式に国際標準として承認 されたことがある.また、4Kに関してはすでに2000年代 半ば頃から、ディジタルシネマのDCI規格に基づくフル 4K(4,096×2,160)フォーマットが規格化されており、すで に多くの映画が製作上映されている.

このような,映像メディア状況の変化や新たな展開に合わせて,さまざまな4K/8Kカメラが開発されている.

4Kカメラには、スーパー35mmサイズ(約24.6mm× 13.8mm)や35mmフルサイズ(約35.8mm×23.9mm),有 効画素数約885万画素~2,000万画素の大型単板CMOS撮 像デバイスが用いられている⁷⁰⁾⁷¹⁾.また、4Kに対応した ハイスピードカメラも開発された⁷²⁾.グローバルシャッタ 方式のCMOS撮像デバイスを搭載し、最大900fpsの動画を カメラの内蔵メモリーに約9.4秒間撮影可能である.

8K映像システムは、2000年頃からNHKを中心に開発が

進められており、1.25型890万画素CMOS撮像デバイスを 用いた4板式カメラ (Dual Green方式)を用いて多くのコン テンツが制作されている。2012年夏のロンドンオリンピッ クでは、現地で撮影、制作された中継番組を英国、米国、 そして、渋谷放送センター、秋葉原、福島でパブリック ビューイングを行うことに成功している。また、2.5型 3,300万画素の単板CMOS撮像デバイスを採用し、重量 5.3kg、消費電力が54Wと機動性を大きく向上させた小型 カメラや、1.5型3,300万画素CMOS撮像デバイスを用いた フレーム周波数120Hzの3板式カメラが開発された⁷³⁾⁷⁴⁾.

今後とも,高精細カメラの高性能化,低価格化は進み, 放送分野への活用も進むと思われ,高精細撮像デバイスの 小型化,高感度化,高フレームレート化等一層の性能の向 上が期待される. (大竹)

3.2 携帯電話用カメラ、ディジタルカメラ、ビデオカメラ 携帯電話,スマートフォン、コンパクトディジタルカメ ラにおいては、イメージセンサの画素サイズを縮小し、画 素数を増やす努力が継続しており、現在、画素ピッチは、 製品で約1.1µm、開発品で0.9µmを下回るところまで進ん でいる.これは画素サイズがレンズ・しぼりを通過した光 の回折広がりと同等ないしはそれ以下にまで達したことに 相当する.単純な画素数増加・画素サイズ縮小競争はそろ そろ終わりに近づきつつある.

一方で、画素数が充分にあることを利用し、オーバサン プリングという発想が出てきた.これは、一つ一つの画素 の解像度をフルに出そうという今までの撮像素子の考え方 とは異なる.

東芝が開発した4,100万画素のCMOSイメージセンサを 搭載したノキアの携帯カメラでは、7画素程度の複数の画 素から得られる信号を一つの画素信号として処理すること により、色再現性、DR、ノイズ性能を改善しているだけ でなく、光学ズームなしでセンサの有効面積を変化させる ことで高画質なズームを可能にしている⁷⁵⁾.

また,富士フイルムは,縦横方向に必ずRGBの画素を存 在させた6×6画素を単位とした非周期性の高いカラー フィルタ配列の画素をもった,CMOSイメージセンサを開 発し光学ローパスフィルタなしで,モアレや偽色の発生を 抑えた,高い解像度を実現している⁷⁶⁾.Bayer配列の2×2 画素単位を基にした画像処理では,光学ローパスフィルタ をなくすと,折り返えされた高周波成分(モアレや偽色)は 低周波成分と区別できないため,一般的には取り除くこと 難しいが,多数の画素を使用したオーバサンプリングだか らこそ,破綻のない良質な画像再現が行えているといえる.

携帯やスマートフォン用のイメージセンサにおいては, 撮像ユニットの小型化・薄型化の要求がきわめて強い.レ ンズ一体型パッケージは必須の技術である.

ソニーは,裏面照射型画素を有するCMOSイメージセン サチップが形成された基板を信号処理回路チップが形成さ

978 (66)

れた支持基板上に積層し,行部分および列部分において数 画素単位で上下の駆動線および信号線を接続した積層型 CMOSイメージセンサを実用化した³¹⁾.積層型にすること で,従来に比べ1/4インチ800万画素のSOC型イメージセン サで,半分以下の面積なる.また,従来のイメージセンサ では,画素の領域と周辺回路領域がSi基板に存在しており, 画素と回路領域で特化したプロセス技術を施しにくかった が,その律速もなくなり,それぞれに最適化を図れる.

積層構造は,小型イメージセンサから始まっているが, 今後,大型イメージセンサにおいても,より低ノイズで高 度な信号処理をイメージセンサ回路レベルで実現しようと した場合,有用となろう.

ディジタルカメラにおいては、フルハイビジョン動画撮 像はもはや標準性能である.ビデオカメラとディジタルカ メラの差は年々なくなってきた.最近、ミラーレスカメラ やライブビュー動画撮影を行う一眼カメラにおいて、イ メージセンサのなかに被写体との距離を検出する位相差画 素を組込んだ像面位相差 AFと呼ばれる技術が盛んに使用 されつつある.

ニコンは、1インチのCMOSイメージセンサに73点の位 相差AFを搭載し、高速かつ精度の高いAF性能が実現で きることを示した⁷⁷⁾.その後、他社も、続々と像面位相差 AF画素を内蔵したイメージセンサを実用化し、コントラ ストAFと像面位相差AFの併用のみならず、光学系内位 相差AFと像面位相差AFを組合せるという方式も登場し、 AFの速度と精度は飛躍的に向上してきている.像面位相 差AF画素の配置は、各社とも独自のものを採用しており、 直線状に配置するもの、擬似ランダムに配置するもの、全 画素にフォトダイオードを左右二つずつ配置するもの⁷⁸⁾な どが登場している.

一般的なカメラユーザは、イメージセンサのRAW信号 ではなく、DSPで処理された画像信号を鑑賞しているが、 最近では、DSPによる画像処理技術が、かつてよりさらに 高度化・多様化し、色補間、色マトリクス、ホワイトバラ ンス、ガンマ処理、欠陥補正、雑音低減、輪郭強調などは もとより、色収差歪み補正、シェーディング補正、AF処 理制御、AE処理制御、各種フィルタリング処理、解像度 校正、圧縮などの深化した処理が今まで以上に進んでなさ れるようになっており、もはや、イメージセンサ単独でカ メラの画質を議論する時代ではなくなった. (須川)

4. 不可視光撮影技術(特殊撮影技術)

4.1 赤外線

赤外線イメージセンサは、赤外線の検出方法により熱型 および量子型の2種類に大別される.熱型は赤外線エネル ギーによる検出部の温度変化を検出するセンサで、冷却機 構が不要であることから、一般的な監視、温度計測用途向 けに広く利用されている.熱型の開発動向としては、マイ クロマシニング技術の進歩に伴い高い断熱性を有する構造 が実現可能となっていることから,画素縮小による多画素 化あるいは小規模アレイによる小型イメージセンサの開発 という2方向が見られる.

熱型における画素の微細化は、12µmピッチのイメージ センサ開発が進められている⁷⁹⁾⁸⁰⁾.NECと産業技術総合 研究所のグループは、画素の微細化に伴う感度低下に対し 新たにボロメータ材料を提案することで、TCR(抵抗温度 係数)を従来比2倍へと改善しており、640×480画素のイ メージセンサを実現した⁸¹⁾.多画素化の観点では、INO社 (カナダ)からは、17µmピッチのボロメータ型イメージセ ンサとマイクロスキャナとを組合せることで、実行ピッチ 8.5µmとした2048×1536画素のセンサ⁸²⁾、三菱電機から は、SOI(Silicon-on-Insulator)ダイオード方式で15µmピッ チ2000×1000画素のセンサ⁸³⁾を実現するなど、熱型イ メージセンサで2メガピクセルに到達している.

小規模アレイでは、オムロン社から16×16画素のサー モパイル型センサの開発が報告されている.ウェハレベル 真空封止技術により感度向上を実現しており、従来の焦電 型センサを用いた人感センサでは検出できなかった静止人 物やその人数・位置検出が可能となった.赤外線イメージ ングによる人体検知は光学イメージングと異なり個人を特 定することがないためプライバシー保護の観点で扱いやす く、今後オフィスなどのエネルギー管理システム用途への 展開が期待される.また、マイクロマシニング技術により 形成された検出器では、低コスト化や感度向上を目指した 検出方式も提案されており、新たな応用も含めた展開が期 待される⁸⁴⁾.

一方の量子型では、赤外線のフォトンエネルギーにより 励起されたキャリヤを信号として検出する。冷却機構が必 要となるが、極めて高い感度を実現できるため天体観測、 軍事用途などで利用されている。量子型センサは、マルチ バンド化やInAs/GaSb系TypeII超格子を用いた検出器の 開発が進められている。従来のHgCdTeと比較して感度の 向上が期待されており、宇宙航空研究開発機構(JAXA)ら が検出器の開発を報告している⁸⁵⁾. (赤#)

4.2 X線

X線イメージングと言えば,一般的には胸部レントゲン 撮影などの医療診断や,空港等の手荷物検査などでよく知 られている.また,近年では製造業各社で品質に対する意 識が向上し,不良解析や製品検査体制が強化されてきてい る.製品内部の観察・検査にはX線による透視が有用であ り,X線透視装置が普及している.

今回は,高精細X線イメージングにおいて,検出器の重 要部品であるX線Ⅱカメラユニット,シンチレータについ て紹介する.

(1) X線Ⅱカメラユニット

X線イメージインテンシファイア(以後X線Ⅱと略す)は,

ヨウ化セシウム系シンチレータ(以後CsIと略す)を入射面 に利用した真空管式の2次元X線検出器である.X線IIは 古くからリアルタイムX線イメージングを行う検出器とし て使われている.構造は,X線を光に変換するCsIシンチ レータ,光を電子に変換する光電面,さらに電子を再度光 に変換する蛍光面,を有する電子管(真空管)となっている. この変換の過程で,輝度増倍を得ていることになる.

X線カメラユニットは、X線Ⅱの出力面をCCDカメラで 読出すX線カメラである.X線カメラユニットの最大の特 徴は高感度な点であり、工業用X線検査装置に世界各国で 数多く使用されている.

また、X線カメラユニットの出力ビデオ信号は従来アナ ログ信号であったが、最近ではディジタル信号タイプもあ る.ディジタル信号タイプでは解像度とダイナミックレン ジの向上が期待できる.また、高精細X線IIに高速、高解 像度カメラをマウントすることで、高分解能、高速での読 出しが可能となる.

(2) シンチレータ

シンチレータはX線を可視光に変換するが、その性能で 画質が決定されるために高精細X線イメージングにおいて は重要なデバイスである.以前はガドリニウム系蛍光体シ ンチレータ(以下GOSと略す)が主流であったが、近年で は医療分野でCsIが広く使われるようになってきている. CsIは柱状構造を持つため、GOS等の粉体構造のものに比 べ光の広がりが少なく、高解像度が得られる特徴がある. 厚膜にすることもでき、高い検出効率を得ることができる.

可視光イメージングでは,近年CCDやCMOSなどの固体撮像素子が主流となっているが,CsIはそれらと容易に結合が可能である.

上記シンチレータは、X線透過率の高いアルミニウムやア モルファスカーボン上に蒸着されている.最近では、X線の 透過率のより高い基板が用いられるようになり、より高輝 度の画像が得られ、少ないX線量で従来と同等の画質を得 ることができるようになった.それによりレントゲン撮影 等では、患者の負担を軽減することが可能となっている.

(鈴木)

5.むすび

情報センシング分野におけるここ3年間の進展を述べた. 幅広い分野でさまざまな進展があり、今後も継続的な発展 が大いに期待できる. (2013年9月2日受付)

〔文献〕

- 1) 高柳功: "イメージセンサ技術の最新動向2011IISW レビュートピックス(2)",映情学誌, 66, 3, pp.166-168 (2012)
- H. Kim et al.: "Development of Lensed Color Filter Technology for Higher SNR and Lower Crosstalk CMOS Image Sensor", Proc. 2013 International Image Sensor Workshop, pp.9-11 (June 2013)
- H. Tian et al.: "Architecture and Development of Next Generation Small BSI Pixels", Proc. 2013 International Image Sensor Workshop,

pp.13-16 (June 2013)

- C. Han-Lin et al: "1.1µm Back-Side Illuminated Image Sensor Performance Improvement", Proc. 2013 International Image Sensor Workshop, pp.101-104 (June 2013)
- E. Fossum: "Application of Photon Statistics to the Quanta Image Sensor", Proc. 2013 International Image Sensor Workshop, pp.313-316 (June 2013)
- 6)渡辺ほか: "1.4µm表面照射型積層導波路構造イメージセンサ",映 情学技報, 36, 18, pp.37-40 (2012)
- 7) 仙石ほか: "1.12µm セル低ノイズ表面照射型積層導波路構造イメージセンサ",映情学技報, 37, 19, pp.1-4 (2013)
- Y. Yamashita, et al.: "A 300mm Wafer-Size CMOS Image Sensor with In-Pixel Voltage-Gain Amplifier and column-Level Differential Readout Circuitry", 2011 ISSCC Dig. Tech. Papers, pp.408-409 (Feb. 2011)
- 9) 黒田ほか: "画素ソースフォロワ相当の埋め込み・表面チャネルトランジスタのランダム・テレグラフ・ノイズ統計的解析",映情学技報, 37, 19, pp.19-22 (2013)
- 10) V. Goiffon, et al.: "New Source of Random Telegraph Signal in CMOS Image Sensors", Proc. 2011 International Image Sensor Workshop, R27, pp.212-216 (2011)
- 11)糸長ほか: "低Noise/高飽和電荷量CMOS Image Sensorの開発",
 映情学技報, 36, 18, pp.41-44 (2012)
- 12) M. Ishii, et al.: "An Ultra-low Noise Photoconductive Film Image Sensor with a High-speed Column Feedback Amplifier Noise Canceller", 2013 Symposium on VLSI Circuits. Digest of Technical Papers, 2-3 (June 2013)
- 13) J. Deguchi, et al.: "A 187.5µVrms-Read-Noise 51mW 1.4Mpixel CMOS Image Sensor with PMOSCAP column CDS and 10b Self-Differential Offset-Cancelled Pipeline SAR-ADC", 2013 ISSCC Dig. Tech. Papers, pp494-495 (Feb. 2013)
- 14) T. Toyama et al.: "A 17.7Mpixel 120fps CMOS Image Sensor with 34.8Gbps Readout", 2011 ISSCC, Dig. Tech. Papers, pp.420-421 (Feb. 2011)
- 15)K. Kitamura et al.: "A 33-Mpixel 120-Frames-Per-Second 2.5-Watt CMOS Image Sensor with Column-Parallel Two-Stage Cyclic Analog-to-Digital Converters", IEEE Trans. Electron Dev., 59, 12, pp.3426-3433 (2012)
- 16) T. G. Etoh et al.: "A 16Mfps 165kpixel Backside-Illuminated CCD", 2011 ISSCC, Dig. Tech. Papers, pp.406-407 (Feb. 2011)
- 17) J. Crooks et al.: "Kirana: A solid-state megapixel uCMOS image sensor for ultra-high speed imaging", Proc. SPIE, 8659, pp.865903-1-14 (Feb. 2013)
- 18) Y. Tochigi et al.: "A Global-Shutter CMOS Image Sensor with Readout Speed of 1Tpixel/s Burst and 780Mpixel/s Continuous", 2012 ISSCC, Dig. Tech. Papers, pp.382-383 (Feb. 2012)
- 19) D. Pates et al.: "An APS-C Format 14b Digital CMOS Image Sensor with a Dynamic Response Pixel", 2011 ISSCC, Dig. Tech. Papers, pp.418-419 (Feb. 2011)
- 20) P. Vu et al.: "Low Noise High Dynamic Range 2.3Mpixel CMOS Image Sensor Capable of 100Hz Frame Rate at Full HD Resolution", Proc. 2011 International Image Sensor Workshop, pp.161-164 (June 2011)
- 21) M. Sakakibara et al.: "An 83dB-Dynamic-Range Single-Exposure Global-Shutter CMOS Image Sensor with In-Pixel Dual Storage", 2012 ISSCC, Dig. Tech. Papers, pp.380-381 (Feb 2012)
- 22)S. Sakai et al.: "A 2.8µm Pixel-Pitch 55ke- Full-Well Capacity Global-Shutter Complementary Metal Oxide Semiconductor Image Sensor Using Lateral Overflow Integration Capacitor", Jpn. J. Appl. Phys., 52, pp.04CE01-1-5 (Feb. 2013)
- 23) T. Watanabe, et al: "A 33Mpixel 120fps CMOS image sensor Using 12b column-parallel pipelined cyclic ADCs", 2012 ISSCC, Dig. Tech. Papers, pp.388-390 (Feb. 2012)
- 24) H. Honda, et al: "A 1-inch Optical Format, 14.2M-Pixel, 80fps CMOS Image Sensor with a Pipelined Pixel Reset and Readout. Operation", Proc. 2013 Symp. VLSI Circuits, 2-1 (June 2013)
- 25) Y. Chae, et al: "A 2.1Mpixel 120frame/s CMOS image sensor with

column-parallel $\Delta \Sigma\,$ ADC architecture", 2010 ISSCC, Dig. Tech. Papers, pp.394-395 (Feb. 2010)

- 26) Y. Oike, et al: "A 256x256 CMOS image sensor with $\Delta\Sigma$ -based single-shot compressed sensing", 2012 ISSCC, Dig. Tech. Papers, pp.386-387 (Feb. 2012)
- 27) M. Shin, et al: "Column parallel single-slope ADC with time to digital converter for CMOS imager", Proc. 2010 ICECS, pp.863-866 (Dec. 2010)
- 28) T. Takahashi, et al: "A digital CDS scheme on fully column-inline TDC architecture for an APS-C format CMOS image sensor", Proc. 2011 Symp. VLSI Circuits, pp.90-91 (June 2011)
- 29) T.L. Li, et al: "A Column-Parallel Hybrid ADC Using SAR and Single-Slope with Error Correction for CMOS Image Sensors", Jpn. J. Appl. Phys, 52, pp.04CE04-1-8 (2013)
- 30) M.W. Seo, et al: "A Low-Noise High Intrascene Dynamic Range CMOS Image Sensor with a 13 to 19b Variable-Resolution Column-Parallel Folding-Integration/Cyclic ADC", IEEE Journal of Solid-State Circuits, 47, Issue 1, pp.272-283 (2012)
- 31)S. Sukegawa, et al: "A 1/4-inch 8Mpixel Back-Illuminated Stacked CMOS Image Sensor", 2013 ISSCC, Dig. Tech. Papers, pp.484-485 (Feb. 2013)
- 32) K. Kiyoyama, et al: "A Block-Parallel Signal Processing System for CMOS Image Sensor with Three-Dimensional Structure", Proc. 2010 3DIC, pp.1-4 (Nov. 2010)
- 33) Yasutomi et al.: "A Time-of-Flight Image Sensor with Sub-mm Resolution Using Draining Only Modulation Pixels", Proc. 2013 International Image Sensor Workshop, pp.357-360 (2013)
- 34) Matsushima et al.: "CMOS Image Sensor for 3-D Range Map Acquisition with Pixel-Parallel Correlation in Region of Interest", Proc. 2013 International Image Sensor Workshop, pp.353-356 (2013)
- 35)小川ほか: "CHLAC特徴抽出機能を持つ動作認識用イメージセンサ", 映情学技報, 35, 47, pp.41-44 (2011)
- 36) 押山ほか: "任意のフィルタ演算が可能な自己相似アーキテクチャア ナログCMOSイメージセンサ",映情学技報, 36, 20, pp.1-4 (2012)
- 37) 望月ほか: "画素内圧縮型マルチアパーチャ超高速イメージセンサの 提案",映情学技報, 37, 22, pp.17-19 (2013)
- 38)大高ほか: "シーン理解のためのマクロ画素分割型CMOSイメージセンサ",映情学誌, 67, 3, ppJ82-J88 (2013)
- 39)香川ほか: "小型ミラーを用いた広角および画角混在型複眼カメラ", 映情学技報, 36, 21, pp.1-4 (2012)
- 40) H. Takahashi et al.: "A 300mm Wafer-Size CMOS Image Sensor for Low-Light-Level Imaging", Proc. 2011 International Image Sensor Workshop, pp.285-288 (2011)
- 41)蚊野浩監修,映像情報メディア学会編:デジカメの画像処理,オーム社 (2011)
- 42)日浦慎作: "コンピュテーショナルフォトグラフィ概観",映情学技報, 36, 18, pp.17-21 (2012)
- 43)山本ほか: "Focused Plenopticカメラにおける超解像に基づく高解 像度なリフォーカス画像の生成手法",映情学技報,36,50, pp.5-8 (2012)
- 44) 大倉はか: "奥行情報に基づくPSF 選択による Wavefront Coding 撮像方式,映情学技法,36,20, pp.29-32 (2012)
- 45)浜田ほか: "超解像自由視点画像合成の高速化実装",映情学誌, 66, 10, pp.385-394 (2012)
- 46) 香川ほか: "3次元カメラとしての小型薄型複眼カメラTOMBOの可能性と展開",映情学技報,34,43, pp.37-40 (2010)
- 47) 香川ほか: "小型ミラーを用いた広角および画角混在型複眼カメラ", 映情学技報, 36, 21, pp.1-4 (2012)
- 48)下山ほか: "高速局所的輝度補正技術の高画質化の検討",映情学技 報,35,19,pp.49-52 (2011)
- 49)片山ほか: "高フレームレート画像を用いた高精度な動き推定方式", 映情学技報, 35, 23, pp.25-28 (2011)
- 50) 小室はか: "暗闇での物体トラッキングと画像合成による高画質化",映情学技報, 36, 38, pp.13-16 (2012)
- 51) W. Bishra et al.: "Lensfree on-chip microscopy over a wide field-ofview Using pixel super-resolution", Opt. Express, 18, 11, pp.11181-11191 (2010)

- 52) K. Sasagawa et al.: "An implantable CMOS image sensor with light guide array structure and fluorescent filter", Proc. 2011 International Image Sensor Workshop, pp.204-207 (June 2011)
- 53) S. Lee et al.: "Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor", Opt. Lett., 38, 11, pp.1817-1819 (2013)
- 54)Y. Maruyama and E. Charbon: "A time-gated 128×128 CMOS SPAD array for on-chip fluorescence detection", Proc. 2011 International Image Sensor Workshop, pp.270-273 (June 2011)
- 55)S. Kawahito et al.: "A CMOS image sensor with draining only modulation pixels for sub-nanosecond time-resolved imaging", Proc. 2011 International Image Sensor Workshop, pp.185-188 (June 2011)
- 56) J. Bosiers et al.: "MEM-FLIM, a CCD imager for fluorescence lifetime imaging microscopy", Proc. 2013 International Image Sensor Workshop, pp.53-56 (June 2013)
- 57)K. Kagawa et al.: "Multi-beam confocal microscopy based on a custom image sensor with focal-plane pinhole array effect", Opt. Express, **21**, 2, pp.1417-1429 (2013)
- 58) A. Singh et al.: "The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy", Opt. Express, 21, 7, pp.8652-8668 (2013)
- 59)X. Cui et al.: "Wavefront image sensor chip", Opt. Express, 18, 16, pp.16685-16701 (2013)
- 60) K. Balram and D. Miller: "Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors", Opt. Express, 20, 20, pp.22735-22741 (2012)
- 61) M. Jayapala et al.: "Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging", Proc. 2013 International Image Sensor Workshop, pp.193-196 (June 2013)
- 62) V. Gruev et al.: "CCD polarization imaging sensor with aluminum nanowire optical filters", Opt. Express, 18, 18, pp.19087-19094 (2010)
- 63) K. Sasagawa et al.: "Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology", Opt. Express, 21, 9, pp.11132-11140 (2013)
- 64) http://www.sony.co.jp/SonyInfo/News/Press/201111/11-147/
- 65) http://panasonic.biz/sav/broch_bdf/aj-px5000_j.pdf
- 66) http://panasonic.biz/sav/avccam/ag-ac90/
- 67) http://www.hi-motion.net/jp/
- 68) http://www.nobby-tech.co.jp/broadcast/phantom/flex4k
- 69) 瀧口ほか: "宇宙用高感度EM-CCDカメラ",映情学技報,36,23, pp.13-16 (2012)
- 70) http://www.sony.co.jp/SonyInfo/News/Press/201109/11-103/
- 71) http://cweb.canon.jp/cinema-eos/lineup/digitalcamera/c500/
- 72) http://www.for-a.co.jp/products/ftone/ftone.html
- 73) http://www.nhk.or.jp/strl/open2013/tenji/tenji03/index.html
- 74) http://www.nhk.or.jp/strl/open2013/tenji/tenji04/index.html
- 75) http://press.nokia.com/2012/02/27/nokia-808-pureview-ushers-in-arevolution-in-smartp
- 76) http://www.fujifilm.co.jp/corporate/news/articleffnr_0415.html
- 77) http://www.nikon.co.jp/news/2011/0921_nikon-1_01.htm
- 78) http://cweb.canon.jp/eos/lineup/70d/index.html
- 79) S. Becker et al.: "Latest pixel size reduction of uncooled IR-FPA at CEA, LETI", Proc. SPIE 8541, 85410C (Oct. 2012)
- 80) R. Driggers et al.: "Infrared detector size: how low should you go?". Proc. SPIE 8355, 835500 (June 2012)
- 81) T. Endoh et al.: "Uncooled infrared detector with 12 μ m pixel pitch video graphics array", Proc. SPIE 8704, 87041G (June 2013)
- 82) C. Chevalier et al.: "A compact 2048x1536 pixel infrared imager for long distance surveillance", Proc. SPIE 8541, 85410L (Oct. 2012)
- 83) D. Fujisawa et al.: "Two-million-pixel SOI diode uncooled IRFPA with 15 μ m pixel pitch", Proc. SPIE 8353, 83531G (May 2012)
- 84) Y. Hui et al.: "High Performance NEMS Resonant Infrared Detector Based on an Aluminum Nitride Nano Plate Resonator", Technical Digest of Transducers 2013 & Eurosensors XXVII, p.968 (June 2013)
- 85)美藤ほか: "GaSb/InAs Type-II超格子赤外線センサの開発",映情 学技報, 36, 5, pp.13-18 (2012)

[須川] 成利 1982年,東京工業大学大学院理工学研 究科修士課程修了.同年,キヤノン(株)入社.1996年, 東北大学大学院工学研究科博士後期課程修了.1999年, 東北大学大学院工学研究科助教授.2002年,同教授. CMOSイメージセンサ等の開発に従事.博士(工学). 正会員

(1) 1987年,学習院大学大学院自然科学科 博士前記課程修了.同年,オリンパス光学工業入社. SIT, AMI, CMDなどの増幅型撮像素子の研究開発に 従事. 2000年,フォトビット入社.以来,CMOSイメー ジセンサの研究開発に従事. 2001年,マイクロンテクノ ロジー社によるフォトビット社の吸収に伴いマイクロン

ジャパンに所属変更. 2009年, マイクロンのイメージセンサ部門がアプ ティナとしてマイクロンから独立し, 現在, Distinguished Member, Technical Staffとして, アプティナジャパンに所属. 正会員.

高橋 秀和 1989年,千葉大学大学院工学研究科修 士課程修了.同年,キヤノン(株)入社.以来,増幅型 イメージセンサ(BASIS, CMOS), SOIデバイス,カメ ラ用検出系センサ(AFセンサ, AEセンサ,視線検知セ ンサ),産業用センサ(ウェハサイズイメージセンサ)等 の設計,開発に従事.現在,同社半導体デバイス製品開 発センター部長.正会員.

注 理人 2010年,東北大学大学院工学研究科博 士課程修了.2007年~2010年,日本学術振興会特別研 究員(DC1).2010年,東北大学大学院工学研究科助教. 低ノイズトランジスタデバイス技術,高機能CMOSイ メージセンサの研究等に従事.博士(工学).正会員.

いせべ 将之 2000年,北海道大学大学院電子情報工 学専攻博士課程修了.2000年,大日本印刷株式会社半導 体製品研究所.2004年,北海道大学准教授.信号処理ア ルゴリズムとその集積回路化の研究,およびCMOSイ メージセンサの高機能化の研究に従事.博士(工学).

近本 隆之 1997年,東京大学大学院工学系研究科 電気工学専攻博士課程修了.現在,東京理科大学工学部 電気工学科教授.画像情報処理,コンピュテーショナル イメージセンサ等の研究に従事.博士(工学).正会員.

小空 2001年,東京大学大学院工学系研究科 計数工学専攻博士課程修了.同年,科学技術振興事業団 研究員.2002年,東京大学大学院情報理工学系研究科シ ステム情報学専攻助手.2005年,同講師.2011年,埼玉 大学大学院理工学研究科数理電子情報部門准教授.高速 画像処理とその応用に関する研究に従事.博士(工学). 正会員.

***ウ 法: 1982年,東京工学院専門学校テレビ放送工学科卒業.同年,NHK入局.同年より,放送技術研究所に勤務し,現在に至る.超高速度CCD,超高精度固体撮像デバイス,光電変換膜積層固体撮像デバイスの研究に従事.正会員.

化物・強誘電体薄膜成長およびそれらの薄膜を用いたセンサ・アクチュ エータとシリコンデバイスとの融合に関する研究に従事.博士(工学).

☆★ 秀征 2001年,静岡理工科大学電子工学科卒業.同年,浜松ホトニクス(株)入社.電子管事業部にて,近接型イメージインテンシファイアの製造・開発に従事.2012年より,同社電子管営業推進部にて,主に光電子増倍管の営業推進に従事.正会員.