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Study of Coupling Loop Interference Canceller for SC-FDE Wireless System with High

Order Modulation
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Abstract: In wireless transmission for broadcasting services, such as wireless cameras, OFDM, which has excellent multipath resistance, is used.

Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing) has been widely used, but in recent years, the Single Carrier - Frequency Domain

Equalization (SC-FDE) method has been attracting attention because it combines good power efficiency with multipath resistance through frequency domain equalization. The

booster of the SC-FDE method, which contributes to extending the transmission distance, is a regenerative relay that demodulates and remodulates the received data and retransmits it.

This allows the construction of a Decode and Forward relay (DF) that can achieve relaying without signal degradation. However, in relaying using the same frequency , multipath

and coupling loop interference (CLI) become problems. We have been studying a CLI canceller for the SC-FDE method that can expand the transmission area while efficiently

using the frequency band. However, there was an issue that the steady-state error after the convergence of the cancellation algorithm was large and it could not handle high-order

modulation. In this paper, we propose a CLI canceller using a Unique Word (UW) that is inserted as a reference signal into the transmission signal of the SC-FDE method, and

show the possibility of constructing a Single Frequency Network (SFN) that supports high-order modulation.

Keywords: SC-FDE, booster, CLI canceller , micrometer waveband, high order modulation

1. Introduction

Wireless cameras, which can transmit video and audio wirelessly in the production of
sports broadcasts, music programs, and other such programs, enable highly mobile
program production without the constraints of cables.

In mobile wireless transmission of program material from wireless cameras and other devices, OFDM
(Orthogonal Frequency Division Multiplexing) is used, which has excellent resistance to multipath interference.
In recent years, however, single carrier-frequency domain equalization (SC-FDE) has
become popular, which combines power efficiency with multipath resistance through
frequency domain equalization.

In particular, the SC-FDE method for professional wireless cameras using millimeter wave
bands has been attracting attention.

Itis a valuable piece of filming equipment that can transmit HDTV and UHDTV signals with
low latency.1 ) However, millimeter wave radio waves are subject to high attenuation,
resulting in a narrow coverage area.

The authors have proposed a method for applying SC-FDE to the millimeter wave band.
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We have investigated a single frequency network (SFN) booster using a coupling loop
interference (CLI) canceller and demonstrated the possibility of expanding the coverage
area. In addition, we have demonstrated that a decode and forward relay (DF) can be
configured to demodulate, remodulate, and retransmit the received data, and that relay
transmission without signal degradation is possible for low-order modulations below
QPSK2 ). However, the CLI cancellers proposed so far have a large steady-state error and

cannot handle high-order modulations above 16QAM?2).

Expanding the coverage area using SFN boosters is an effective method not only for
millimeter wave bands but also for microwave bands3). In particular, higher-order

modulation beyond 64QAM has been standardized using microwave band OFDM4).

In this paper, we propose a CLI cancellation algorithm using UW (Unique Word) inserted
in the transmission signal of the SC-FDE system to realize an SFN booster that can handle
high-order modulation beyond 16QAM, and further propose the Double RLS algorithm as

a sequential coefficient update algorithm for the CLI canceller.

We compared the two algorithms, Recursive Least Square (RLS), and the proposed
method for SC-FDE wireless systems supporting high-order modulation.
The possibility of constructing a CLI canceller is examined by computer simulation.

This will be clarified through the analysis.
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2. SC-FDE method

The SC-FDE system adds a reference signal to a single-carrier transmission
signal and transmits it, and uses the reference signal to perform frequency domain
equalization at the receiver. The SC-FDE system has a smaller ratio of average
power to peak power than the OFDM system, which allows for a larger amplifier
output power. Figure 1(a) shows a block diagram of the transmitter section of the
SC-FDE system, and Figure 1(b) shows a block diagram of the receiver section.

In the transmission section of the SC-FDE system, a UW is inserted as a
reference signal into the transmission signal that has been QAM modulated (QAM
mod.), and the signal is transmitted through a transmitting filter. The transmission
signal structure is as shown in Figure 2. By inserting a UW before and after the
signal block, it is possible to enhance multipath resistance in addition to frequency
domain equalization on the receiving side.

Let N be the block size , M be the data block size , and L be the transmission block
size. When the data block is frequency-domain transformed (FFT: Fast Fourier
Translation) on the receiving side,

A block of size M + N is used , combining the latter half of UWF and the first half of
UWB . The UW code is the Zadoff-Chu code5) (hereafter referred to as Chu code),
which has a constant amplitude and excellent autocorrelation characteristics. The
same Chu code is used for both UWF and UWB.

Even if the Chu code is cyclically shifted, the Chu code maintains its continuity and
its characteristics do not change. Therefore, UWF and UWB are connected
continuously.

In the receiving section, the received signal is filtered by a receiving filter, and
then the signal is transformed into the frequency domain.

The signal is then subjected to a fast Fourier transform (FFT) and then subjected to frequency domain equalization (FDE) to remove
noise, multipath interference, nonlinear distortion, and other transmission path characteristics that are added during the transmission path.
The channel characteristics required for frequency domain equalization are

estimated using a known UW.
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Receiving
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filter £en.
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Fig. 1 SC-FDE.
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Figure 2 Block diagram of SC-FDE.

500 (136)

In order to suppress noise, interference, and distortion components contained in
UWr, filter processing (Block filter) is performed for each FFT block after frequency
domain conversion. The filtered UWr (for a block of the size of the first half of UWF
and the second half of UWB combined) isN

The UW generator (UW gen.) generates

The transmission channel characteristics are estimated by dividing by UWtrue (CE:
Channel Estimation). The received signal is divided by the estimated transmission
channel characteristics (FDE) and filtered with a roll-off filter (NYQ filter) that
satisfies the Nyquist criterion. Finally, the signal is converted from the frequency
domain to the time domain (IFFT) and QAM demodulated (QAM Demo.), making it

possible to extract only the original transmitted signal components.

3. Booster

A booster amplifies the received signal and retransmits it at the same frequency.
This is an easy way to extend the transmission distance, but there are issues with
this method, such as the radio waves emitted from the transmitting antenna being

reflected back to the receiving antenna, degrading the transmission characteristics,
and the booster causing oscillation.

In addition, there is a multipath in the propagation path from the parent station
to the booster, so it is necessary to achieve both CLI cancellation and multipath
equalization. To solve these problems, a previous study investigated a booster that
combines a CLI canceller and time-domain multipath equalization, and demonstrated

its effectiveness in QPSK modulation2).

However, it was not possible to handle high-order modulation.
We investigated a CLI canceller that can handle the modulation.

3.1 Overview of the booster's internal processing

A schematic diagram of the booster configuration is shown in Figure 3. The booster's
received signal y(n) is expressed as the sum of the parent station signal s(n), the parent
station signal multipath g(n), the interference signal gH(n)u(n), and noise NAWGN(n) as

shown in equation (1).

y(n) = s(n) + g(n) + g" (Mu(n) + nywen(m) @)

Here, the diffraction wave qH(n)u(n) is the booster output signal u(n) multiplied
by the diffraction path characteristic qH(n), and [ ]H is the operator representing the

Hermite transpose.
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Fig. 3 Booster with CLI canceller.
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The interference qH(n)u(n) and the master station multipath g ( n') contained in
the received signal y(n) are respectively eliminated by the CLI canceller (CLI
The interference is removed using a Canceller and a Linear Equalizer, and finally a
regenerative repeater mechanism (Re-modulator) is incorporated to demodulate,
judge, and re-modulate the signal from the parent station s(n) and retransmit it.

3.1.1 CLI Canceller The CLI canceller block has an

input u(n), an internal adaptive filter (FIR filter) with a tap length of D and a tap

coefficient of w(n), which are

u(n) = [u(m),u(n— 1), ,u(n-D + 1]" @)

w(n) = [wn),wn —1),--,wn—-D + D]” @)
The output signal of the adaptive filter is expressed as wH(n)u(n).

Moreover, the signal yO(n) after CLI cancellation is

¥o(n) = y(n) = w (n)u(m) o

This can be expressed as:

The adaptive algorithm adjusts the tap coefficient w(n) so that the adaptive filter
output wH(n)u(n) approaches the diffraction grating gH(n)u(n) . If a tap coefficient
w(n) that satisfies qH(n) = wH(n) can be obtained , the diffraction grating gH(n)u(n)
can be completely cancelled. Note that the diffraction grating propagation path
characteristic gH(n) has an infinite degree in real space, but if the main diffraction
grating components can be expressed by the tap coefficient w(n), the diffraction
grating can be cancelled sufficiently.
be able to.

3.1.2 Linear Equalizer Figure 4 shows an overview

of a linear equalizer. For the parent station signal multipath g(n), a linear equalizer
is used to perform equalization using the LMS (Least Mean Square) algorithm. The
signal yf(n) after the booster receive filter is input, and the algorithm is run to
minimize the difference between the demodulated, judged and remodulated signal
r(n) and the filter output I(n) , and the calculated tap coefficient wi(n) is passed to
the FIR filter for filtering . The tap coefficient update formula when the step size is

pum is expressed as follows:

e(n) =r(n) —I(n) e

wi(n) =wi(n = 1) + ppyr(n)e”(n) ®)
The LMS step size pm of the linear equalizer is set small in order to suppress

steady-state errors.

7

yr(n) FIR Filter I(n)

(w,(n)

In
r(n) ErmrLM S

Figure 4 Linear Equalizer.
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This will reduce the error in the steady state.

3.1.3 Demodulation, decision and remodulation

Extract the data portion from the linearly equalized signal I(n),
The bit is determined by QAM demodulation. The bit-determined signal is then QAM
modulated again to restore the parent station signal s(n). Furthermore, the UW true
value UWtrue(n) regenerated within the booster is added in the same way as the
transmission signal in Figure 2. By performing this demodulation, determination,
and re-modulation, it is possible to completely eliminate relay degradation.

3.1.4 Booster Processing Delay The

booster output signal u(n) is delayed by the filtering process in the booster. In
the computer simulations in this paper, a filtering delay of 28 samples is assumed
to occur in the Transmitting Filter and the Receiving Filter, respectively, and a total
of 56 samples is set as the Booster delay, which is the delay from reception to
equalization processing, CLI cancellation, remodulation, and transmission. The
Booster delay value does not affect the linear equalizer in the booster and the loop
cancellation performance. However, in the receiver, in areas where both the parent
station wave s(n) and the booster wave u(n) are received, if the delay time difference
between the parent station wave and the booster wave exceeds the equalization
range by the UW (corresponding to the length of N in Figure 2) , the frequency

domain equalization performance may deteriorate2).

Other simulation parameters are shown in Tables 1 to 4 of Chapter 4.
The results are

shown in Table 3. 3.2 Conventional CLI

Canceller The configuration of the CLI canceller proposed in Reference 2) is
shown in Figure 5. To distinguish it from the computer simulation described later,
this method is referred to as the “Data method (Data).”
Tap update calculations are performed for all data blocks of lock length L. Tap
weights are updated without distinguishing between UW and Data.

In the reference 2), the taps are updated based on the gradient descent method
(GD), and the update formula for the tap coefficient w(n) is given by the step size y,
the signal yO(n) after CLI cancellation, and the complex conjugate u*(n) of u(n) , as

follows:

w(n) =w(n —1) + uy,(n)u’(n) )

This can be expressed as:
In this paper, we also use a recursive least squares (RLS) algorithm to achieve the conventional method.
RLS (Reduced Least Square) algorithm6) applied to the data

We also prepared the data (Data) and compared it with the proposed method shown in the next section.

a

w!l(n)u(n) <— FIR Filter u(n)

( w(n)

Vo(n)—> Adaptive Algorithm

Figure 5 Previously proposed CLI canceller.
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B, MIELLFDO LMS Step size um 22V TIE, EH R
AEMZ DBEP /NS EET S, AU X ) IPEAEE X

s

yp(n) FIR Filter I(n)

(w,<n>

In
r(n)ﬂQ—? ErrorLMs

X4 Linear Equalizer.

# X BRZERETTD SC-FOEERRE S X T LD -HDEVIAHF + >t 5 DIRES

HH A, THERBIIBIILEEZMSTILNTE S,

3.1.3 18R - HIE - BEH

MESEABROBS IS, T—Fiaz0)HL,
QAME#T A2 LTy MHAETS. ¥y MAIELE
TEHEQAMZML, BRHEs)ZHEITT L. 51,
T—AF —NTHELZUWEMHD UW,yw(n) % X2 D%EE
57 LRI 2. S OB - HxE - HERZITH 2
T, THRHILE IR T ENWREE 2 5.

314 T—XZ—LIEEFE

T—=25 —WHEBum)I, 7—AF—NIIBITE 74
VY ZMEICE Y RIE LTI &S, RO
W32l —33 »yTld, Transmitting Filter &
Receiving Filter IZBWT, ThEN, 28 sample D7 1 WV
) SRBENEAETAHE L, £F156 sample Z ZEN S
SRR CLIF v Y VI WHAR L CRET A E T
DIEME Booster delay & i€ L72. Booster delay DX,
T =AY —NOMILE LA & 10 D) AARF v ¥ 2V PEREICIE
HEEIRIZE Y., LarLl, 2ERICBVWTL, BRKE
s 7 =AY —Wun)x Wl F5 ) 7 TlE, BRHK
ET— A5 —POIREIFIFED UW IZ X 2 EA L (X2,
NORESIZHNY) 2Bz 5L, FREERERSEMEESKT
TALENH D).

ZFOMDYI 2L —3a T A=Y FFEIEDOFK] ~
3T

32 fEXRAAXCLIFv>t3

THRY TIRELACLIF v v 7O #E5I12RT.
Bk HEEEY I 2L —Y a Y TORIOLD, 2H5
DOFHEx [7—4 7K (Data) | LKL T 5. K2R L7727
Oy Z7RLOTF—=% 70y 73XTCTY vy THEHHIOFEZ
79. UW E Datax XJl&$ % v TEAZEHT 5.

HRY TUE, ®AME T (GD: Gradient Descent) & X—
22 L7249 v THBEIT->TBY, ¥ v 7HREwnh) O FEH
KiE, A7 v 7% A Xu, CLIF ¥ ¥ VG T y(n), un)
OBF I w (n) % T,

w(n) =wh — 1) + py,(nu*(n) ("N

LFINSG.

F72, KX TIE, fEkFTRIUTRLS (Recursive Least
Square) 7V T A L6 Z @M L7257 — % HRNORLS (RLS
(Data)) b HE L TREIIRTREF LR L K EIT- 72,

s

w'(n)u(n) «<—FIR Filter u(n)

( w(n)

Yo(n)—>{ Adaptive Algorithm

X5 Previously proposed CLI canceller.
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The tap coefficient update formula by RLS (Data ) is the same as that shown
in Section 3.5, where d(n) = yO(n). 3.3 CLI Canceller for High-

Order Modulation

The CLI canceller proposed in this paper, which uses only UW for learning,
is shown in Figure 6. To distinguish it from the computer simulation described
later, we refer to this method as the "UW method."
The CLI cancellation method using UW described in this section is the same
as the channel characteristic estimation method using UW in the frequency
domain equalization (FDE) of the receiver described in Chapter 2.
The UW

part extracted from the received signal y(n) at the booster is
If UWbr(n) is the UW signal and the true UW value regenerated within the booster is UWtrue(n) ,

then the difference between these becomes the interference component d(n).

d(n) = UWp, (n) = UWgpye(n) (8)

Here, by subtracting UWtrue(n), which corresponds to the parent station wave s(n),
from equation (1), the interference component d(n) becomes a UW consisting only of

the parent station wave multipath g(n), the diffraction wave gH(n)u(n), and the noise

NAWGN(n) component .

The interference component d(n) is input to the adaptive algorithm as a target
value , and the tap coefficient w(n) of the adaptive filter is adjusted so that the
retransmitted signal u(n) approaches d(n) . The adjustment of the adaptive filter
taps is controlled so that it is performed only in the UW portion.

The adaptive algorithm used is the Double RLS algorithm, which uses two
stages of the proposed RLS algorithm. The LMS and RLS algorithms6) were
used as comparison algorithms. In addition, the GD (Data) method, which
updates the tap weights without distinguishing between the conventional UW
and Data, and the GD (UW) method, which updates the tap coefficients only in
the UW portion, were prepared. The update formula used was the one shown

in Section 3.2 for the conventional CLI canceller. 3.4 LMS Algorithm

The update formula for the tap coefficient w(n) using the LMS algorithm is
described by the following formula using the step size , the interference
component d ( n), the filtered output wH(n)u(n), and the booster output signal
u(n) . Note that the step size and input signal are different from those of the

LMS algorithm used in the linear equalizer.
e(n) = d(n) — w ()u(n) ©)

w(n) =w(n—-1) + pu(n)e*(n) (Ten)

The step size p of the LMS used in the CLI canceller is a linear equalizer.

s

w!l(n)u(n) <— FIR Filter u(n)
( w(n)
d(n)
UW,,.(n) Adaptive Algorithm
bm)}
lerue(n)

Fig. 6 CLI canceller using UW for adaptive algorithm.
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This is to allow the step size to follow the fluctuations of the CLI, but while the

convergence speed improves, the steady-state error increases.

3.5 RLS Algorithm Evaluation

Function for the RLS Algorithm J is the forgetting factor ¥ As such,

Jrus@) = ) 2 d(D) = w (myu (D] an

The RLS algorithm, which incorporates past signals as weights into the
evaluation function, is characterized by its high convergence. The update

formula is as follows:

B A71P(n — Du(n)
k)= 1— A"’ ()P(n — Du(n) 2

e(n) = d(n) — w(mu(n) (13)
w(n) =w(n—1) + k(n)e(n) (14)

P(n)=1"'P(n—-1)

-1 tk(mu(m)P(n—1) (9)

where k(n) is the gain vector and P(n) is the sum of the correlation matrices

of the inputs.
®(n) = z A=t uut (i) (16)
i=1

Inverse Y This is an estimate of —1(n).

matrix of 3.6 Double RLS algorithm

Figure 7 shows the Double RLS algorithm.
The structure of the (DRLS) algorithm is shown below.

Two RLS filters are used in parallel, and the output of the first RLS filter, wl
H(n)u(n), uses the interference component d1(n) and the booster output signal

u(n) as input, and is the same as the filter output when a normal RLS algorithm

is used.
B ATYP (n — Du(n)
ki(n) = 1= T ()P, (1 — D) (17)
ey (n) = d; (n) — wi (n)u(n) (1s)
wi(n) =wi(n— 1) + ky(n)ey (n) (19)
u(n) In . wF(n)u(n)
[.Iwbr(]’l) dj(n') RLS Filterl
Desired Errorf——
UW () w(mu(n)
u(n)
—»In Out]
dy(n) | RLS Filter2 | W&'(mu(n)
» Desired

Fig. 7 Double RLS algorithm.
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RLS (Data) (2 & % % v 7REEHRE, 35HIRTRIC
BUT, dn)=yon)& L7BE LR LIRS,

3.3 SRERMGCLIF v+ t7F

R TRET 2, UWOREFFFIMH 3 % CLI
Fr e IOERERGIIRT. HiBET LMK Y I 2
L—yaryToRokd, 2HE50FEE2UWHR
(UW) ] LFils 5. &8, RETh~<2UW % Hw72CLI
Fy VPR, BTN, A3 ER O JE I R aE
AL (FDE) 2B 5 UW % v 72 f5 % B d i o8 Tk &
TR 5.

T—=AF —IZCZERFy)» L) ML UW 5%
UWp(n), 7 =A% —NTHELZUWEEE UWhe(n) &
ThHL, INLOEGFVPTERSIER .

d(n) = UWp, n) - UWere ) (8)

22T, FHEGdmIE Q1) X256, BREsm)ITHY
T5UWoon)ZWET 52 LT, BRE<VF IS gn),
[\ ) AR qH(n)u(n), HiE nawenm) 55O A THEK S
72UWE 5.

FHRGdm)I T HEGE LCT#EIST VITY XL AT
L, HREEES u@AdmINGEDI L XHIZHIE T 4 VF D
7y THRBwn)ERES L, BILTANVIDS v TOHE
T UWERSGT DA TIT S & 95 \ZHlHT 5.

BIST N T) ALIZIE, RETVITY AL THLRLS %
2B PEA L72Double RLS7 VT ZA & WA, KTV
TYRLELT, LMS7TNVITY XL ERLST VY X206
MR L. 72, #EkOUW & Dataz XBI€ 35 v 7
HAZEH T 5GD (Data) ke, UWHGTOARY v 7
BRHOEH %179 GD (UW) FXzHE L7, HHE3.2
Miftsk TR CLIF ¥ Y2 FIRLAZD D EHH L.

34 LMS7) I XL

LMS7ILVITY XLIZE 5%y 7R EBwh) o EHRIL,
ATy THA A, FTHERSdR), 74 V7 %MD
wi(n)un), 7—A% —MIEFun)z AT, TR
TRtk SN b, &b, BEFLHETHEYTWLLMS 7V
TNV ANEFAT Y THA AR ANETIE LS.

e(n) = d(n) —wi(mun) 9

wn) =whn—1) + uu(n)e*(n) (10)
CLIF ¥ ¥ FIZHWw % LMS ® Step size u iZHTEE LA

7
w(n)u(n) <— FIR Filter u(n)
w(n)
d(n) (
UW,,(n) Adaptive Algorithm
()}

thrue(n )

6 CLI canceller using UW for adaptive algorithm.
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IZHWALMS D step size um & D D REHRETSH. Th
i3, CLIOZEIBHESE L7200 TH A, PUHEE XA
L350, EERENIHZALAZ LIS,

35 RLS7/)IU XL

RLS 7V T X2 OFHliBE i, SHRMEAL LT,

Jrus@) = Y 271d(@D) = wh (yu(D)| an
i=1
EEEND. BEOHEETA L LTHAMEICEAAA
TWAHRLS 7V T A 40E, PORMEAEW S EAHE# L L
THFons., BHKNEIUTOLI TR 5.

B A71P(n — Du(n)
kM) = T )P — D) 12

e(n) = d(n) —wi(m)un) (13)
wn) =whn —1) + k(n)e(n) (14)

Pn)=2"'P(n—1)

-1 tk(Mu'(m)P(n—1) 15

ZZTRMIETFEA VR MV, P)IZ AT OB O
MTHhs

D) = Y I uu(D) (16)
i=1
DHATH @ U n)DHEEMETDH 5.

3.6 Double RLS 7JLT 1) X Ly

7WCRLST7 VT XA % ZOHH L7 Double RLS
(DRLS) 7 VT X 2 O % R$.

RLS7 4 V% & W5 THEHALTEY, 1EHDRLS
74 NE O wl e, THESdin)E7T—A % —
HHESum)Z ADICHWTEY, @HEORLST VI X
AEACEBO 74 VIMTTERLIZR 5.

AP (n — Du(n)

(V) = T Py (= Dut) an
e;(n) = d;(n) — wi (Mu(n) (18)
wi(n) =wi(n—1) + k;(n)ey (n) (19)
_)u(n) In Out W;](n)u(n)
UW,,(n) d(n) RLS Filterl
Desired  Error—
UW,,.,.(n) wH(n)”(n)
u(n)
—>iIn Out
dy(n) | RLS Filter2 | W3(m)u(n)
» Desired

B7 Double RLS algorithm.
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Pi(n) = A;'Py(n — 1)

— A ky (W)t ()P, (n — 1) 0

In the second-stage RLS filter, the output error e1(n) in the first-
stage RLS filter is used as the second-stage target signal d2(n), and
the difference is compensated for by the second-stage RLS filter,

allowing for more accurate CLI estimation.

dy(n) = e,(n) -

X B ATPy(n— Du(n)
am) = 1—Az"ut (n)Py(n — Du(n) o

The BERDbst is calculated using the parent station transmission bits as the true value and used
for evaluation.
Booster transmit bit error

BER = — (29)
bst Master transmit bit

4. Computer Simulation

A computer simulation was performed using the parameters shown

in Tables 1 to 3, assuming the use of a microwave wireless camera.

Table 1. SC-FDE transmit parameters.

. . 256QAM | 1024QAM | 4096QAM
e, (n) =d,(n) —wimun e Carrier Modulation
2(n) 2(n) z(njai) (Mth=28) | (Mth=10) | (Mth=12)
Symbol rate Iz 8.0
wa(n) = wy(n — 1) + ky(n)e,(n) ymbol rate /s [Mi1z]
Occupied Band Width 85
- [MHz| ]
Pz(n):)tzlpz(n_l) . o m——
— 3 e (W (W)P(n — 1) P o 16
2 2 2 [MHZ}
The final output is the sum of the outputs of the two RLS filters. Over sample rate 2
) ) Roll-off rate 0.1
It looks like this: =
UW sequence Zadoff-Chu
wh (n)u(n) = wl (nu(n) + wi (n)u(n) 26) UW symbols N 256
Data symbols M 3840
3.7 Doppler shift FFT points (M + N) 4096
In wireless communications, when the booster or receiver itself moves, or Number of block SymbOIS 4352
L(M+2N
when radio waves are reflected by a moving object, the frequency of the radio (‘. - i)
Transmission bit rate
waves fluctuates due to the Doppler effect. The fluctuating frequency is (fs X M X Mth / L) 56.4 70.5 847
calculated using the following formula. When radio waves with carrier [Mbps]
frequency fc [Hz] réach a moving object with speed v [m/s] at an angle [rad], Block length [us] 544
the Doppler shift fd [Hz] is: UW_length [”S] 32
Booster input C/N [dB] 40 46 52
v
fa= Efccosa @
Here, c represents the speed of light, and ¢ { 3.0x108 m/ s . For Table 2 Booster parameters.
) e . . Double
example, when a radio wave with fc=10 GHz is reflected from the front Algorlthm GD LMS | RLS .
(=0 rad) of a miving object approaching at v=1 m/s, fd § 33 Hz. :
Radio waves that have been Doppler shifted due to the Doppler CLI Bl s I Dopas | 0008
. . . RLS Ist 0.999
effect are recognized as a signal whose phase changes over time at Canceller . ?
forgetting
the receiving section, and the constellation rotates around the origin factor 2nd 0.9999
at the same frequency as the Doppler shift. Taps 30 30430
To cancel the CLI, the adaptive filter of the CLI canceller needs to Li Algorithm LMS
near 5
rotate the tap coefficients w(n) on the complex plane to follow time Equalizer Step size iy, 0.0004
changes. Tips 732
3.8 Evaluation Booster delay [us] 7 (56 sample)
Index The evaluation of the booster’s CLI cancellation effect is
based on the modulation error ratio (MER) for F symbols calculated Table 3 Transmission paths parameters.
from the parent station signal s(n), the linearly equalized signal I(n), D/U Iy [dB] 0
and their difference eMER(n) = s(n) — I(n), as shown in Figure 3. CLI Delay [us] 0.25 (2 sample)
- ” Doppler Frequency f; [Hz] -20~20
i=oll(k)]
MERbSt = 1010g10 W (28) Master to DU j e [dB] 6
e HER, Booster
: Dela 0. 625 (5 sample
In addition, the booster output bit error rate (BER) Multipath v s { Bis)
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P,(n) =2;'Pi(n—1)

— 7y () ()P (n — 1) (20)

2BEHDORLS 74 V% Tk, 1BEHDORLS 74 V& I2B
MR Ee (% ZDF F 2B H HERE S di(n) & LTH
W, 2BEHDORLS 7 4 V7 Ik 5 THESEHIETHZ & T,
XV IEMEIC CLIMEE 2479 .

d,(n) = e;(n) (21)
B A31P,(n — Du(n)

k() = T2 P, (n = Duln) 22)

e,(n) = dy(n) — whi(m)un) (23)

wy(n) = wy(n — 1) + kx(n)e,(n) (24)

P,(n) = 3;'P,(n—1) 25)

= 3k, (u (n)P,(n — 1)

A B 2BEORLS 74 vy o iofiTHh Y,
UTFDEH12h5.

wi (n)u(n) = wi(n)u(n) + wi (n)u(n) (26)

37 Ry73—27k
BRBEICBWT, TR Y —RZERAKIBIT 2
Wi, FREWARBEERANG L22a, Ny 7o —3%
X ) BRI WERAEET 5. EEHEBEBIILFORT
A IR D, HEo[m/sIOBEIRICF v ) YR HZ
DOEBEAFEE Orad] THEL 2L EDOFY FF— 7 b
falHz] 1,

v
ﬁ=;ﬁm% ©X0)

LRIND., 72720, clHEEL, c=30%x1083m/sTHh
5. Blz1E, £.=10GHzOEEHPv=1m/s TV TW 5
BYRDIET (0=0rad) TR L7246, fu=33Hz L% 5.

Fy 79— Ny 7I5—27 M L2EKEE, %
R IR AR ICZEE L T A E 7 & LTk s
N, a2 L—varyPREEZHLELTRYy 77 =3
7 MERUEERTRES S, Py 7937 M2
CLIZ¥x vtV $572012, CLIFY &5 D@L 7 4
VEIEY v TR wn) 2 EFR P L TRBZIIERET %
LIRS L ULEND 5.

3.8 FHM+EIR

T— A% —®OCLL¥ v ¥R VEIRICET 55, K312
R, BREETsE, MBS GEOETIRn), 5D
Hevmr(n) = s(n) — () LETR SN L FIRO Y ¥ AVITBI
%2R (MER: Modulation Error Ratio) # Hiv 5.

k=oll(O)I?

MER =101 —_—
bse = 10l0gro gy T2

(28)

T/, 7—2%—=WH¥ vy ;iR (BER: Bit Error

# X BRZERETTD SC-FOEERRE S X T LD -HDEVIAHF + >t 5 DIRES

Rate) BERy &, BURBEBY v M & EAHE L CEMAE LAH
CHWS.
Booster transmit bit error

BER, = (29)
bst Master transmit bit

4, BtEHEC I L—Y3 >

<A 7T AX LV AA XS OM %R, |1~
RIIRT NI A—FEHNT, FHEEI Iz -

#*1 SC-FDE transmit parameters.

Carrier Modulation 256QAM | 1024QAM | 4096QAM
(Mth=38) | (Mth=10) | (Mth=12)
Symbol rate f; [MHz] 8.0
Occupied Band Width g5
[MHz] ’
Operation clock rate 16
[MHz]
Over sample rate 2
Roll-off rate 0.1
UW sequence Zadoff-Chu
UW symbols N 256
Data symbols M 3840
FFT points (M + N) 4096
Number of block symbols
L(M+2N) 4352
Transmission bit rate
(fy XM X Mth / L) 56.4 70.5 84.7
[Mbps|
Block length [us] 544
UW length [us] 32
Booster input C/N [dB] 40 46 52
2 Booster parameters.
. Double
Algorithm GD LMS | RLS RLS
Step size p 0.00005 | 0.003
CLI RLS Ist 0.999
Canceller . :
forgetting
factor 2nd 0.9999
Taps 30 30+30
Linear Alg(?rithm LMS
Equalizer Step size iy, 0.0004
Taps 32
Booster delay [ps] 7 (56 sample)
%3 Transmission paths parameters.
D/U Iy [dB] 0
CLI Delay [us] 0.25 (2 sample)
Doppler Frequency f; [Hz] -20~20
Master to D/U I, [dB] 6
Booster
Multipath Delay [us] 0. 625 (5 sample)
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The occupied

bandwidth was determined based on the standard ARIB STD-B113 ). The
transmission line characteristics were measured using the
This was created based on the specifications of the coupling interference canceller
for the CU21CL terrestrial digital broadcasting relay station7 ) and the performance of
a two-stage SFN broadcast wave relay using a coupling interference canceller8 ). The
Booster input C/N, which represents the carrier-to-noise ratio, was set to 40 dB for
256QAM, assuming transmission under more severe conditions, since the CU21CL
specifications7) set the standard to "equivalent C/N of the upper station signal: 45
dB." Note that for 1024QAM, which has four times the number of symbols and halves
the distance between symbols, the noise amplitude is halved and the noise power is
1/4, at 46 dB, and similarly for 4096QAM, it was set to 52 dB.

The parameters of the CLI cancellation algorithm, such as step size and RLS
forgetting factor, were set to the values that minimized BERbst when only the CLI
canceller was operating. The parameters of the linear equalizer were set to the
values that minimized BERbst when the linear equalizer was operated at = 6 dB after
the CLI cancellgjparameters were determined. Note that the calculation of BERbst
was started after 130 blocks (approximately 40,000 bits) had elapsed, when the tap

coefficients of the CLI canceller and linear equalizer were sufficiently stable.

There are.

The D/U (Desired/ mb) of the two-wave model between the parent station and
Undesired) «-pooster was set at 6 dB, which is approximately half the
amplitude of the multipath wave g(n) compared to the desired wave (parent station
wave s(n)). The D/U of the CLI and the parent station wave s(n) is-~The CLI was set
to 0 dB, assuming that the diffraction wave gH(n)u(n) has the same amplitude as the

desired wave (parent station wave s(n)).

5. Simulation results

5.1 Characteristics of the CLI Canceller

First, we verified the performance of the CLI canceller when only the parent station
signal s(n) and the CLI were received at the booster receiver and only the CLI
canceller was operated.

5.1.1 Learning curve (CLI only) The

learning curve of the CLI canceller is shown in Figure 8. “cLl
35 4 —— DRLS(UW)
————— RLS(UW)
301 LMS(UW)
25 GD(Data)
— RLS(Data)
@ --- GD(UW
g 20, (uw)
% 4096QAM
e 151 1 fa=10Hz
S Tey =0dB
101 [y None
LEg: None
5
0

0.00 0.25 050 075 1.00 125 150 175
Number of Iterations le6

Figure 8 CLI Canceller Learning Curve (4096QAM).

No multipath, no linear equalizer.

504 (140)

0dB, fd = 10 Hz. The CLI cancellation algorithm is
Comparisons were made between the GD, LMS, RLS, and DRLS of the UW method
(labeled UW), and the GD and RLS of the data method (labeled Data). The horizontal

axis represents the number of repetitions (synonymous with the passage of time), and the

vertical axis represents MERDbst , and the plots were made for the modulation method 4096QAM.

Since no significant difference was observed in the MERbst values between 256 QAM
and 4096QAM, only the results for 4096QAM are shown.

First, the steady-state MERDbst is below 15 dB.
The algorithms GD(Data), RLS(Data), and GD(UW) have many errors and are not
suitable for practical use. GD(Data) has low accuracy in calculating the tap coefficients,
and GD(UW) has low accuracy in calculating the tap coefficients.
Since the number of updates for RLS(Data) is limited to the UW part, its performance
is even worse than that of GD(Data).
For (Data), the target signal for the adaptive filter must be the signal yO(n) after
subtraction of the CLI replica, and it was found that the calculation accuracy of the
tap coefficients is lower than when the known signal UWtrue(n) is used to calculate
the target signal .

Next, we verify DRLS(UW), RLS(UW), and LMS(UW). The convergence speed is
DRLS(UW) § RLS(UW) > LMS
Itis believed that LMS (UW) had a low MERbst due to problems with steady-state
error and fluctuation tracking.
(UW) has issues with tracking performance, and MERDbst is lower than the highest
value . DRLS (UW) is able to compensate for the tracking performance of RLS (UW),
and showed the best MERbst. Regarding the

fact that no significant difference was observed between the modulation methods,

It can be considered that there is a limit to the convergence accuracy due to the
performance of the CLI canceller.
5.1.2 CLI Doppler Frequency fdBER for fluctuations inpst

Characteristics (CLI
only) Next, the BERbst characteristics versus CLI Doppler frequency fd for
modulation methods 256 QAM to 4096QAM are shown in Figures 9 to 11. CLI, which
represents the D/U between the parent station signal s(n)-and the CLI, was set to 0
dB. The cancellation algorithms compared were the data method GD (Data) and the
UW method LMS (UW), RLS (UW), and DRLS (UW). RLS (Data) and GD (UW) were

omitted because they had an extremely high error rate of around 0.4 to 0.5.

Figure 9 shows the fd-BERbst characteristics for 256QAM . For each algorithm, no
errors occurred in the simulation in the central area where the Doppler frequency fd
fluctuates little , and error-free transmission was possible. In terms of the relative
merits of each algorithm, DRLS (UW) showed the best characteristics, followed by
RLS (UW),

The order was LMS (UW), GD (Data).

(Data), LMS (UW), RLS (UW),

DRLS(UW) is winning by a large margin, and regarding DRLS(UW)

The error-free interval is more than twice as wide as that of RLS (UW). This indicates
that the second-stage tracking compensation filter of DRLS (UW) enables more
accurate CLI tracking. Next, Fig. 10 and Fig. 11 show the fd -BERDbst characteristics

for 1024QAM and 4096QAM. As the modulation order increases, the fd
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10-24 i A g —&- DRLS(UW) . . - )
A.A 2 assumed that the booster receiver received the parent station signal s(n) and
A A
% 10734 3 #ﬂ T CLI as well as the parent station signal multipath g(n), and verified the signal
e 3 Fy
B 104 p convergence performance and BERbst characteristics against the Doppler shift fd
i . !
E:! when the linear equalizer was operated in addition to the CLI canceller.
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e 55! 256QAM
o h Tewr = 0dB
-6 | i T'ms: None H i
10 : _ qu: None 5.2.1 Learning Curve (CLI + Multipath)
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operated are shown in Figures 12 to 14. The modulation method is 256 QAM~ = 0
Figure 9 CLI Doppler fd vs. BERbst (1024QAM). 4096QAM, CLI = 6 dB. e=cLl OB, fd = 10 Hz, and multipath is
No multipath, no linear equalizer. b
mi
First, in the learning curve for 256QAM in Fig. 12, the convergence of the tap
coefficients to the optimal value increases in two stages.
1014 In the first rise up to around 0.1x10-6, CLI is eliminated mainly by the operation of
the CLI canceller, and the convergence is rapid. After that , when the number of
-2
10 learning times is between 0.1x10-6 and 0.5x10-6, the parameters for eliminating
10-3 the remaining multipath waves are linearly equalized.
4 J
EC': However, the linear equalizer is learning the domain.
o
1074 The step size is small, which slows down the convergence of multipath and makes
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CLI Doppler fy [Hz] CLI, which in turn allows the MERDbst value to converge further.
Figure 10 CLI Doppler fd vs. BERbst (1024QAM).

No multipath, no linear equalizer. In the learning curves for 1024QAM and 4096QAM shown in Figures 13 and 14,
the number of learning iterations rises rapidly to around 0.1 x 10-6 , after which
the slope becomes gentler. This is thought to be because, initially, rapid

10714 convergence occurs due to the operation of the linear equalizer and CLI canceller,
but in the subsequent learning of the linear equalizer, learning does not progress
2 ==
e smoothly and takes time due to factors such as the inability to reduce demodulation
_3 errors in the re-modulator section, resulting in a drop in learning efficiency.
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Figure 11 CLI Doppler fd vs. BERbst (4096QAM).
No multipath, no linear equalizer.
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It can be seen that the degradation of the BERbst value for fd becomes greater : chu —oa8 | | | RLS(UW)
) . o ‘ .. =6dB ——=- LMS(UW)
and the error-free interval becomes narrower. This is because there is an issue 01+—F——"mb —T T
......... GD(Data)

with the CLI cancellation performance, and the tracking and convergence T T T T T T T
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performance for Doppler frequency fluctuations is insufficient, resulting in Number of Iterations le6

demodulation errors in the demodulation, decision and Figure 12 CLI Canceller Learning Curve (256QAM).

remodulation blocks. Also, there is a difference in BERbst depending on whether fd is positive or negative.  With multipath, with linear equalizer.
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Figure 13 CLI Canceller Learning Curve (1024QAM).
with multipath, with linear equalizer.
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Figure 14 CLI Canceller Learning Curve (4096QAM).
with multipath, with linear equalizer.

5.2.2 CLI Doppler Frequency fdBER characteristics for bst

variations in (CLI + multipath)

Next, Fig. 15 to Fig. 17 show the modulation methods 256QAM to 4096QAM.

fd ~-BERbst when the Doppler frequency fd of the CLI is changed
The characteristics of CLI and multipath are as follows: empyy =0
dB, e mb = 6 dB. At a transmission frequency of fc = 10 GHz,
the Doppler frequency fd = 20 Hz is when the speed of the moving objectis v ¥
This corresponds to 0.6 m/s y 2.16 km/h.

First, in Figure 15, which shows the fd —-BERbst characteristics of 256QAM,

The error-free frequency range is =9 to +7 Hz for DRLS, which is the best.

This compares favorably with the RLS, which has the next best characteristics in the range of -3 to +3 Hz.

The CLI canceller in Section 5.1.2 is used.

When compared with the fd -BERbst characteristics when the
Therefore, this difference is linear, etc.
This can be said to be due to the degradation caused by the multipath equalization performance of the equalizer.

The BERDbst is asymmetric between positive and negative fd.

This is because the learning process of the tap changes depending on whether it is positive o negative, and as shown in Figure 16,

As shown in the figure, the phase tracking of the CLI canceller output is positive and negative.
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Figure 15 CLI Doppler fd vs. BERbst (256QAM).
with multipath, with linear equalizer.
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Figure 16 CLI Canceller Output Phase Difference (256QAM).
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Figure 17 CLI Doppler fd vs. BERbst (1024QAM).
with multipath, with linear equalizer.

This is due to the differences that exist.

Next , in Figure 17, which shows the fd-BERbst characteristics of 1024QAM ,

The CLI cancellation algorithm also works well when the BERbst is 256 QAM.

The deterioration is compared with the RLS (UW) case near fd=0 Hz.

The superiority of DRLS (UW) is reversed, but this is due to the difference in the modulation method.

This is because the optimal step size um of the linear equalizer changes with
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with multipath, with linear equalizer.
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Figure 18 CLI Doppler fd vs. BERbst (4096QAM). in each Linear Equalizer tap

with multipath, with linear equalizer.
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In addition, in Figure 18, which shows the fd — BERbst characteristics for

4096QAM , the BERDst is significantly worse for all algorithms than for 256 QAM 1072
and 1024QAM. This is because, as shown in Figures 11 and 14, the convergence "
) o ) » & 1073 ¢ LEq taps
accuracy of the CLI canceller and the multipath equalization processing capability g 5 taps
of the linear equalizer are bottlenecks. 104 --¥-- 10 taps
-~ 15 taps
1034%“:' —&- 20 taps
5.2.3 Changes due to tap number 1073 lfjp; -0 ch ~ —©— 25taps |
= =x- 30 taps
The number of taps in the linear equalizer was changed for each of the RLS Cmp = 6 dB P
10-54 RLS(UW) |-+ 35taps ||
(UW) and DRLS (UW) algorithms, and the relationship between the number of taps T T T T T T T
0 5 10 15 20 25 30
D in the CLI canceller and BERbst was examined. The results are shown in Figures CLI Canceller taps D
191024, Figure 20. RLS Taps vs. BERbst (1024QAM).
For 4096QAM, the number of taps of the linear equalizer (LEq taps) is set to 5 to in each Linear Equalizer tap.

35 taps, and the number of taps of the CLI canceller D is set to 1 to 30 taps.

The BERDbst is plotted for each of the following: = 0 dB, fd = 10 Hz, multipath wave
CLI oLl b = 6dB 10714
It was decided.
) . . . . 1072 T
First, when the CLI canceller tap number D is one (the horizontal axis value is
1), both the RLS and DRLS algorithms achieve 256QAM to A
210 LEq taps |
Cancellation performance is not fully demonstrated for all modulation formats of é —e— 5taps
4096QAM. This is because the output signal u(n) is buffered by the number of 104 -¥-- 10 taps
~a 15 taps
taps D and used in the cancellation calculation. When the CLI delay in the 4096QAM - 20 taps
-5 fa=10Hz _ i
simulation conditions is 2 samples, the number of taps D must be two or more in 10 Ceur = 0 dB —6— 25taps
order for CLI to be cancelled. In this way, the length of CLI delay that can be I'mp = 6 dB =S 20108
S s way. 9 Y 10-64 | | RLS(UW) w35 taps
cancelled is equal to the number of taps D of the CLI canceller. T T T y T T
0 5 10 15 20 25 30
CLI Canceller taps D
In Figures 19 to 21, which show the results of the RLS algorithm, the BERbst Figure 21 RLS Taps vs. BERbst (4096QAM).
characteristic is flat when the CLI canceller tap count D is 2 to 30 , and it can be in each Linear Equalizer tap.
seen that the BERbst value depends only on the tap count of the linear equalizer.
The more taps the linear equalizer has, the higher the BERbst improves, which is There is no significant difference between the number of taps of the filter being 30 and 35.
because the linear equalizer The BERbst value is saturated at around 3x10-3. For
This is because the equalization performance improves as the number of taps 1024QAM and 4096QAM shown in Figures 20 and 21, the degradation of the
increases. BERDbst value increases as the modulation order increases. This is similar to the
In the Taps-BERbst characteristic of 256 QAM shown in Figure 19 , the linear results shown in the fd-BERbst characteristics in Figures 16 and 17 , and is due to the CLI.
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This is due to the convergence accuracy of the canceller and the performance of the
multipath equalization process in the linear equalizer, and it is believed that improving
these will also improve the BERbst value.

In Figures 22 to 24, which show the results of the DRLS algorithm,
The values are generally improved compared to the RLS algorithm. However, the

values deteriorate as the number of CLI canceller taps increases.

LEq taps
—e— 5 taps
-¥-- 10 taps
- 15 taps
-8 20 taps
—o— 25 taps
-%- 30 taps
= 35 taps
256QAM
fa=10Hz
Ty =0dB
Ty = 6dB
DRLS(UW)

o 5 10 15 20 25 30
CLI Canceller taps D

Fig. 22 DRLS Taps. BERbst (256QAM). in each

Linear Equalizer tap.
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Ty =6dB ~—* 30taps
10-6 DRLS(UW) _ --+- 35taps |
. I
0 5 10 15 20 25 30

CLI Canceller taps D

Figure 23. DRLS Taps vs. BERbst (1024QAM).

in each Linear Equalizer tap.

10724
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1077+ lfc; Zods o 25taps
Tmp=6dB  ~% 30 taps
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| | 1
0 5 10 15 20 25 30
CLI Canceller taps D
Figure 24 DRLS Taps vs. BERbst (4096QAM).
in each Linear Equalizer tap.
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This is because the tap coefficients of the taps that do not actually need to operate (in
this case, all taps except the second tap) are also adjusted, which becomes noise and
makes it impossible to generate a CLI replica correctly. Therefore, the best BERbst
value is obtained when there are only two taps, the minimum number required for CLI
cancellation.

The reason why this phenomenon does not occur with the RLS algorithm is that the
convergence performance of the RLS algorithm itself is poor, rather than the degradation
of the BERDbst value due to the operation of tap coefficients that do not need to be
operated.

In summary, the linear equalizer is an FFE, so the

more taps it has, the better its performance. The CLI canceller is the main

The value is improved by including the CLI delay time in the number of taps.

It turns out there is a connection.

3. Conclusion

We investigated a CLI canceller for a SC-FDE wireless transmission system using
high-order modulation for professional wireless cameras using microwave bands. We
proposed a CLI canceller that uses only UW for learning in the SC-FDE system, and a
new Double RLS algorithm that uses two stages of RLS. In a transmission simulation
using 256QAM, we confirmed that Double RLS has more than twice the CLI Doppler

tolerance of RLS.

In the future, we will continue to improve signal processing accuracy and multipath
equalization and loop interference cancellation functions in order to realize a booster

with a CLI canceller that can also support 1024QAM and 4096QAM.

This research was funded by the Broadcasting Culture Foundation in fiscal 2019 and

This project was carried out with the support of grants in fiscal year 2022 and 2023.
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