Invited Field Papers

Development of the Virtual Mezamashi-kun

Ryosuke Matake †, Yoshito Baba †, Nobuto Ochiai †, Eiji Okamoto † and Akihisa Totsuka †

Summary: "Virtual Mezamashi-kun" is a newly developed, highly stable, real-time control system for 3D CG characters that can be used daily for live broadcasts. It uses procedural animation techniques, as well as input from motion capture, to give lifelike movement to characters with body shapes that differ from human skeletons. Its distinctive feature is that it can be operated by program production staff alone, without the need for large-scale hardware or specialized operators.

Keywords:mobile devices, gamepad, procedural animation, real time, facial tracking, Unity

1. Introduction

As Fuji Television's information program "Mezamashi TV" celebrates its 30th anniversary, a project was launched to create a 3D CG version of the program's character, "Mezamashi-kun." Rather than simply creating a 3D version of a 2D animation, the newly developed "Virtual Mezamashi-kun" system allows the character to move freely in real time and allows for two-way communication with the cast.

Generally, to move a CG character in real time, a capture system is used that corresponds to the part of the body that needs to be moved (whole body, hands, facial expressions, etc.). However, to ensure reliability in live broadcasts, expensive equipment and a large number of personnel are required. Considering daily use, it is desirable to keep operating costs as low as possible.

On the other hand, recent mobile devices such as smartphones and tablets are becoming significantly more sophisticated, with devices equipped with LiDAR scanners that enable 3D scanning.

Figure 1: Conventional Mezamashi-kun

2024年7月31日受付,2024年12月26日再受付,2025年2月14日採録 †株式会社フジテレビジョン

(〒137-8088 東京都港区台場2-4-8, TEL 03-5500-8888)

Figure 2 Virtual Alarm Clock

The AR functions provided have also evolved, with motion capture and facial tracking functions now being implemented. With this in mind, we designed "Virtual Mezamashi-kun" with the aim of creating a system that is easy for operators to use while keeping costs down by utilizing mobile devices.

2. Aiming for a "feeling of being there"

"Virtual Mezamashikun" is a mobile device and game
The controller has the functions shown in Table 1.

"Virtual Mezamashi-kun" is a normal motion capture

Table 1: Functions of each part and devices used

めざましくんの動き	使用デバイス
表情の変化	モバイル端末
全身の動き	ゲームコントローラ
腕の動き	ゲームコントローラ
手の動き	ゲームコントローラ
足の動き	モバイル端末

バーチャルめざましくんの開発

Development of the Virtual Mezamashi-kun

真武亮介[†], 馬塲義土[†], 落合信人[†], 岡本英士[†], 戸塚晶久[†] Rvosuke Matake [†], Yoshito Baba [†], Nobuto Ochiai [†], Eiji Okamoto [†] and Akihisa Totsuka [†]

あらまし 「バーチャルめざましくん」は、生放送の帯番組で毎日運用できる高度な安定性を持った、新規開発の3次元CGキャラクタのリアルタイム制御システムである。モーションキャプチャからの入力だけでなく、プロシージャル・アニメーションの手法を用いて人型骨格と異なる体形のキャラクタに生き生きとした動きを与え、大掛かりなハードウェアや専門オペレーターを必要とせず、番組制作スタッフのみで運用できる点が特徴である。

キーワード:モバイル端末,ゲームパッド,プロシージャル・アニメーション,リアルタイム,フェイシャルトラッキング,Unity

1. まえがき

フジテレビの情報番組「めざましテレビ」が放送30周年を迎えるにあたり、番組キャラクタの「めざましくん」を3次元CG化する企画が立ち上がった.2次元アニメーションを単に3次元化するのではなく、リアルタイムで自由に動かし、出演者と双方向コミュニケーションを可能にしたシステムが、今回開発した「バーチャルめざましくん」である.

一般的にCGキャラクタをリアルタイムで動かすには、動かしたい部位に応じたキャプチャシステム(全身,手,表情など)を使用する.しかし、生放送での信頼性を求めると高価な設備や多くの人手が必要となる.毎日使用することを考えると、運用コストはできるだけ安価であることが望ましい.

一方で、最近のスマートフォンやタブレットなどのモバイル端末は、LiDARスキャナを搭載して3Dスキャンが可能になるなど、高機能化が著しい。また、メーカーから提

図1 従来のめざましくん

2024年7月31日受付,2024年12月26日再受付,2025年2月14日採録 †株式会社フジテレビジョン

(〒137-8088 東京都港区台場2-4-8, TEL 03-5500-8888)

図2 バーチャルめざましくん

供されるARの機能も進化しており、モーションキャプチャやフェイシャルトラッキング機能も実装されている。この点に着目し、モバイル端末を活用してコストを抑制しつつ、オペレーターが使いやすいシステムを目指して「バーチャルめざましくん」を設計した。

2. 「そこに居る感 | をめざして

足の動き

「バーチャルめざましくん」では、モバイル端末とゲームコントローラに表1の機能を持たせた.

「バーチャルめざましくん」は、通常のモーションキャプ

めざましくんの動き	使用デバイス
表情の変化	モバイル端末
全身の動き	ゲームコントローラ
腕の動き	ゲームコントローラ
手の動き	ゲームコントローラ

表1 各部の動きと使用するデバイス

モバイル端末

Because this is a machine translation, it may contain typographical errors, mistranslations, or parts of the paper that have not been reflected in the translation.

Please be sure to cite the original publication when referencing.

Figure 3 Mobile device and game controller in the sub

Unlike conventional chat systems, it is actor-less and does not require any devices or markers to be attached to the body.

This allows operations to be performed in the sub-studio, where it is easiest to grasp the progress of the production, and allows for flexible response to sudden changes in direction during live broadcasts. In addition, by using devices that are familiar to everyone, it has been made easy to use for anyone.

When creating the 3D CG for "Mezamashi-kun," Unity was used as the CG rendering platform. This is due to the following features of Unity:

- Compatible with various devices, and projects created on a PC can be played
 Easily apply projects to mobile devices
- Intuitive visual editor allows you to create in real time
 You can proceed with development while checking changes
- A wide range of assets and plugins are available, making development more
 efficient than other platforms. Especially facial tracking captured
 on mobile devices.

The key point was that a plug-in was available that allowed for easy import of image data. This made it possible to complete the entire process, from acquiring the operator's facial expressions to drawing the 3DCG, on a single mobile device.

Furthermore, when implementing the program, we aimed to achieve natural movements that seem lifelike. For example, a human's body actually sways slightly even when just standing. Virtual Mezamashi-kun, whose regular position is next to the anchor in the studio, spends a lot of time standing in the same place, so a subtle sway was necessary to make it look natural. However, repeating simple movements creates an unnatural feeling, and even if animations with various swaying amplitudes are randomly connected, it is difficult to draw a smooth sequence when starting to walk at an arbitrary timing. Similar issues exist with computer game characters, and to solve them, the actor's motion data is usually recorded in advance.

The keyframe animation technique is used, in which motion data is recorded and then played back to move the character. However, since Mezamashi-kun has a different body shape from a human, creating motion data is time-consuming, and there are also issues with the need for a large amount of motion data to realize various patterns of movement. In addition, when moving a character using this technique, it is difficult to take into account the unevenness of the ground surface.

One drawback is that it appears slippery because it has not been considered.

So this time, we didn't use motion data, but instead used procedural animation, which calculates and draws the movements of CG characters

This technique allows for on-the-spot correction of character movements simply by changing parameters, and is also used in CG crowd drawing in movies and TV dramas. In "Virtual Mezamashi-kun," the facial tracking function of the mobile device is used to draw footsteps with a sense of solidity using procedural animation according to the position of the operator's head, and random noise is added to create subtle body swaying. Furthermore, a program has been developed that allows for smooth drawing even when the direction changes during movement, and it also supports direction changes and retracing steps. CG characters for TV programs

It is rare to achieve autonomous real-time attitude control in

This, along with the fact that no CG or technical staff is required and that the
program production staff can operate it alone, is a major feature of "Virtual

Mezamashi-kun."

3. The Importance of Rock-Paper-Scissors

"Mezamashi TV" has a popular segment called "Mezamashi Janken," in which a performance was devised in which "Virtual Mezamashi-kun" plays rock-paper-scissors. Technically, this can be achieved by assigning the hand movements of rock, paper, and scissors to buttons on a game controller. However, "Mezamashi Janken" involves giving away gifts to viewers, and making a mistake could lead to an accident. Therefore, a new system was developed that allows viewers to preset the hand they want to play on the screen of a mobile device.

Figure 4: Reliable rock-paper-scissors preset function

Figure 5: Mezamashi-kun playing rock-paper-scissors

[Copyrights to Machine Translated Content]

図3 サブ内のモバイル端末とゲームコントローラ

チャシステムと異なり、身体に装着するデバイスやマーカを必要としないアクターレスが特徴である。これにより番組進行状況を最も把握しやすいスタジオサブ内でのオペレーションが可能となり、生放送での急な演出の変更にも臨機応変に対応できる。また、日頃から慣れ親しんでいるデバイスを採用することで、誰でも扱いやすい操作性を実現している。

「めざましくん」の3次元CG化にあたって、CG描画プラットフォームにはUnityを採用した. その理由はUnityが持つ次のような特徴による.

- ・多様なデバイスに対応しており、PCで作成したプロジェクトをモバイル端末に簡単に適用できる
- ・直感的なビジュアルエディタにより、リアルタイムに 変更を確認しながら開発を進めることができる
- ・アセットとプラグインが豊富に用意されており、他の プラットフォームに比べて効率よく開発できる

特にモバイル端末でキャプチャしたフェイシャルトラッキングデータを簡単に取り込めるプラグインが用意されている点がポイントであった。これによって、オペレーターの表情取得から3DCG描画までの一連の処理を、1台のモバイル端末で完結することができた。

また、プログラムの実装にあたっては、実際に生きてい るかのような自然な動きの実現を目指した. 例えば, 人間 は立っているだけでも実は微妙に体が揺れている. スタジ オのキャスター横が定位置となる「バーチャルめざましくん」 は同じ場所に立っている時間が長く、自然に見せるには微 妙な揺れが必要だった. しかし、単純な動きの繰り返しで は違和感が生じるし、さまざまな揺れ幅のアニメーション をランダムにつなぎ合わせても、任意のタイミングでの歩 き始めにスムーズに連続する描画が難しくなる. コン ピュータゲームのキャラクタでも同様の課題があり、解決 するために通常はアクターのモーションデータを事前に記 録し、それを再生してキャラクタを動かすキーフレーム・ アニメーションの手法が用いられる. ただ, 人間の体形と は異なる「めざましくん」のモーションデータ作成には手間 がかかるうえ、さまざまなパターンの動きを実現するには 大量のモーションデータが必要となる課題がある.加えて、 この手法でキャラクタを移動させると, 地表面の凹凸が考 慮されていないために滑って見えてしまう欠点もある.

そこで今回はモーションデータを使用せず、CGキャラ クタの動きを計算して描画するプロシージャル・アニメー ションを採用した. この手法はパラメータを変化させるだ けで、その場でキャラクタの動きを修正することができ、 映画やドラマでのCGによる群集描画などにも用いられて いる.「バーチャルめざましくん」では、モバイル端末の フェイシャルトラッキング機能を利用し、オペレーターの 頭の位置に応じてプロシージャル・アニメーションで接地 感のある足の運びを描画し、ランダムノイズを加えて微妙 な体の揺れを実現した. さらに移動中に向きが変わっても スムーズに描画できるプログラムを開発し, 方向転換や歩 みの戻しにも対応している. テレビ番組用CGキャラクタ で自律的なリアルタイム姿勢制御を実現した例は珍しく, CGや技術スタッフが不要で、番組制作スタッフ一人でオ ペレーションできる点と合わせて、「バーチャルめざまし くん」の大きな特徴となっている.

3. じゃんけんの重み

「めざましテレビ」には「めざましじゃんけん」という名物 コーナーがあり、「バーチャルめざましくん」にじゃんけん を出してもらう演出が考案された. 技術的にはグー、チョキ、パーの手の動きをゲームコントローラのボタンに割り 当てれば実現できる. しかし、「めざましじゃんけん」には 視聴者プレゼントが伴い、出し間違いは事故に直結する. そこで、モバイル端末の画面上に出し手をプリセットする

図4 安心のじゃんけんプリセット機能

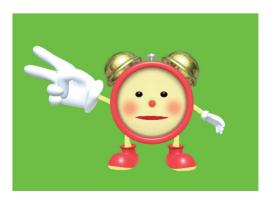


図5 じゃんけんをするめざましくん

Because this is a machine translation, it may contain typographical errors, mistranslations, or parts of the paper that have not been reflected in the translation.

Please be sure to cite the original publication when referencing.

This function allows players to prepare their moves well in advance. We also paid particular attention to the interface so that players can always check which "move" is currently selected.

By limiting ourselves to being greedy and allowing only the bare minimum of functions to be operated with the controller, there have been no operational errors by operators to date.

4. Video system

"Virtual Mezamashikun" is a mobile device that uses CG characters.

The system is specialized for drawing the characters, and the link with the studio camera is realized by using a Viz transmitter (a real-time 3D graphics system widely used in the broadcasting industry) permanently installed in the studio sub.

The Viz renders "Mezamashi-kun" and inputs the screen output to the Viz transmitter as an external image. The Viz performs chromakey processing on the input "Mezamashi-kun" and outputs a FILL/KEY signal.

Furthermore, the virtual effects were not limited to "Mezamashi-kun"; as part of the 30th anniversary project, a new effect using chromakey curtains in the studio was added. Under normal operations, a Viz would be prepared for "Mezamashi-kun" and the virtual background, but since we wanted to keep it within the existing facilities and personnel, we devised a way to process it with just one Viz. The key point was that the virtual background was drawn only on the FILL signal, and the chromakey and linear key were combined on the studio switcher.

Specifically, we want the virtual background, the person, and "Mezamashi-kun" to overlap in that order, so we first composite the virtual background onto the live camera using chromakey. Next, we create three layers by FILL/KEY compositing "Mezamashi-kun" using linear key.

In addition.

we checked the real-time nature of the process from the operator's operation to the output from the Viz and whether there was any variation in the processing delay.

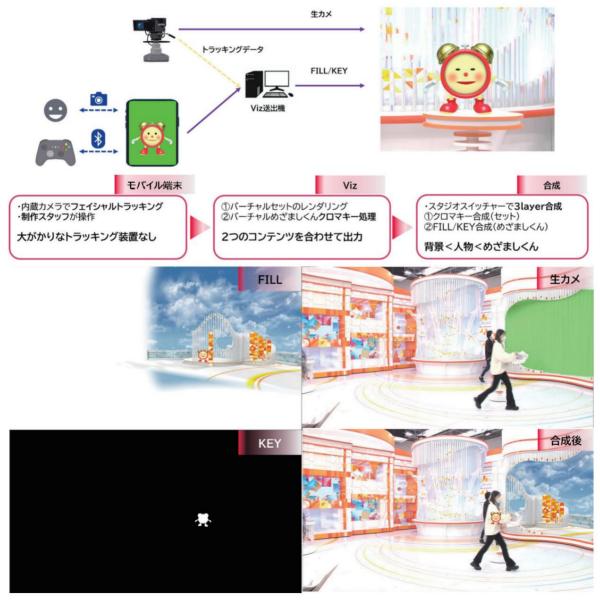


Figure 6. Conceptual diagram of the video system and actual CG output

[Copyrights to Machine Translated Content]

The copyright of the original papers published on this website belongs to the Institute of Image Information and Television Engineers.

Unauthorized use of original papers or translated papers is prohibited. Please be sure to cite the original publication when referencing.

For details, please refer to the copyright regulations of the Institute of Image Information and Television Engineers.

機能を設け、事前に余裕を持って出し手を準備できるようにした。また、現在どの"手"が選択されているかを常に確認できるよう、細かいインタフェースにもこだわった。

欲張らず,必要最低限の機能のみをコントローラで操作できるようにした効果もあって,これまでオペレーターによる操作ミスは起きていない.

4. 映像系統

「バーチャルめざましくん」は、モバイル端末をCGキャラクタの描画に特化させ、スタジオカメラとの連動はスタジオサブに常設のViz送出機(放送業界で広く使用されているリアルタイム3Dグラフィックシステム)を利用して実現している。モバイル端末で単色グリーンを背景に「めざましくん」を描画し、その画面出力をViz送出機に外部映像として入力する。Vizでは入力された「めざましくん」をクロマキー処理してFILL/KEY信号を出力する。

また、バーチャル演出は「めざましくん」だけにとどまらず、30周年企画として新たにスタジオ内のクロマキーカーテンの演出が加わっていた。通常の運用であれば、「めざましくん」とバーチャル背景用にそれぞれVizを用意するところであるが、既存の設備と人員を増やさない運用に落とし込みたかったため、Viz 1台で処理できるように工夫した。ポイントとしては、バーチャル背景をFILL信号のみに描画して、スタジオスイッチャーでクロマキーとリニアキーを組み合わせたことにある。

具体的にはバーチャル背景,人物,「めざましくん」が順に重なるようにしたいので,まずはクロマキーで生カメにバーチャル背景を合成する.次に,リニアキーで「めざましくん」をFILL/KEY合成することで三つのレイヤーを成立させた.

また、オペレーターが操作してVizから出力されるまでのリアルタイム性と、処理遅延にバラつきがないか確認す

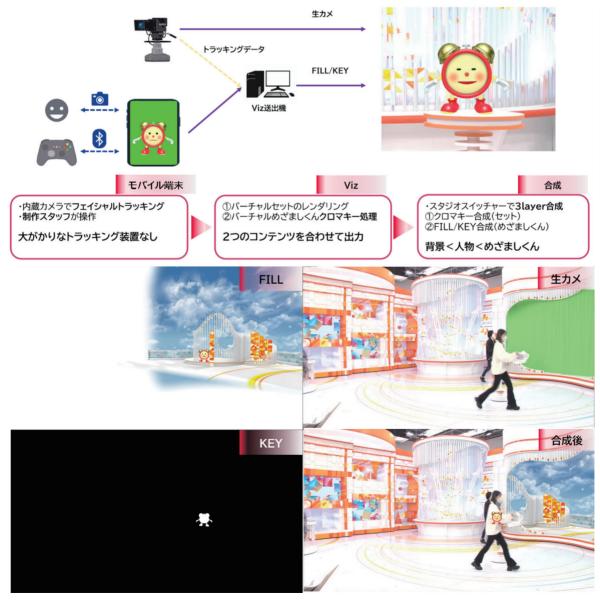


図6 映像系統概念図と実際のCG出力

Because this is a machine translation, it may contain typographical errors, mistranslations, or parts of the paper that have not been reflected in the translation.

Please be sure to cite the original publication when referencing.

Table 2 Keyer Relationship

プライオリティ	キーイング	ソース	キー
1	リニア	FILL	KEY
2	クロマ	FILL	生カメ

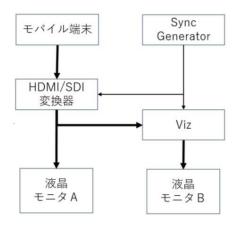


Figure 7 Delay measurement system

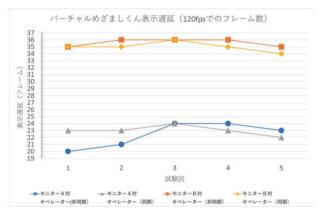


Figure 8 Processing time from operator action

Specifically, the system shown in Figure 7 was set up, and slow-motion shooting (120 fps) was performed with a smartphone so that LCD monitors A and B and the operator were in the same frame.

The changes in the operator's facial expression are reflected in the "Virtual Figure 8 shows the results of measuring the number of frames it takes for "Live Alarm Clock"'s facial expression to change, and Figure 9 shows the display difference between video monitors A and B. When synchronization was not applied with the HDMI/SDI converter, the display on video monitor A varied by up to 1 frame (equivalent to 30 fps; same below), but when synchronization was applied, the delay converged to approximately 6 frames. This is because the buffer inside the HDMI/SDI converter is able to absorb the variations in the input signal. On the other hand, it was confirmed that the Viz output was always stable with a delay of 9 frames.

Also, from Figure 9, we can see that Viz can process synchronous external inputs in 3 frames, but when an asynchronous signal is input, the processing time can be extended to just under 4 frames.

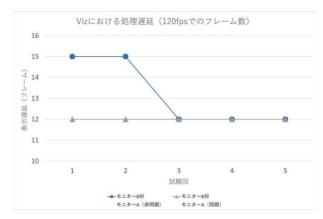


Figure 9. Viz external input video processing time

It is assumed that this is because Viz's internal processing requires three frames, and a buffer of up to one frame is provided to synchronize asynchronous signals with its own operating timing.

5. Start of operation

"Virtual Mezamashi-kun" began operation on April 3, 2023, the first day of the 30th anniversary of Mezamashi TV's broadcast. There were concerns about using it for live broadcasts because the mobile device and game controller were connected wirelessly (Bluetooth), but there were no communication interruptions or battery failures, and it has been used stably.

The reason for this is that the equipment was selected on the assumption that it could be operated while charging, and that every effort was made to prevent battery degradation by shutting down the mobile terminals at the end of each program.

Furthermore, in consideration of the long duration of the live broadcast, the equipment configuration was designed with redundancy in mind. Specifically, two sets of mobile terminals, game controllers, and various signal converters were prepared, ensuring a system in which operations could be continued by simply swapping them in the event of a failure.

One operational issue we have had so far is when, during a pre-broadcast check, the video output from a mobile device lost signal. Although there was little time left until the broadcast began, we had a spare device in the sub-studio, so we were able to replace it without any hassle and continue the broadcast without any problems.

Figure 10: Scene in Studio Sub

表2 キーヤーの関係

プライオリティ	キーイング	ソース	キー
1	リニア	FILL	KEY
2	クロマ	FILL	生カメ

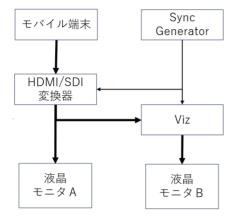


図7 遅延測定系統



図8 オペレーターの操作からの処理時間

るために測定を行った. 具体的には図7に示す系統を組み、液晶モニタA、Bとオペレーターが同じ構図に収まるようにスマートフォンでスロー撮影 (120 fps) した.

オペレーターの表情の変化から液晶モニタ上の「バーチャルめざましくん」の表情が変化するまでのフレーム数を計測した結果を図8に、映像モニタAとBの表示差を図9に示す。HDMI/SDI変換器で同期をかけない場合は、映像モニタAへの表示が最大1フレーム(30 fps 換算。以下同様)バラつきが生じたが、同期をかけるとほぼ6フレーム遅延に収束した。これはHDMI/SDI変換器内のバッファで入力信号のバラつきを吸収できているためである。一方 Viz 出力は常に9フレーム遅延で安定していることが確認できた。

また、図9からVizは同期している外部入力は3フレームで処理できるが、非同期信号が入力されると4フレーム弱まで処理時間が延びる場合があることがわかった。これは、

図9 Vizの外部入力映像の処理時間

Vizの内部処理には3フレーム必要で、さらに非同期信号の信号を自身の動作タイミングに同期させるために最大1フレーム分バッファが用意されているためと推測される.

5. 運用開始

「バーチャルめざましくん」は、めざましテレビ放送開始から30年目の初日となる2023年4月3日から運用を開始した. 生放送での使用にあたり、モバイル端末とゲームコントローラが無線接続(Bluetooth)であることが懸念されたが、通信断やバッテリー切れなどは発生せず、安定して使用できている.

その理由として, 充電しながら運用できることを前提に 機材を選定したことに加え, 番組終了ごとにモバイル端末 をシャットダウンして, バッテリーを劣化させないように 最大限工夫している点が挙げられる.

さらに長時間の生放送であることを考慮して、冗長性に配慮した機器構成とした.具体的にはモバイル端末とゲームコントローラ、各種信号変換器を2セット用意し、障害時に差し替えることで運用を継続できる体制を確保している.

なお、これまでの運用におけるトラブルとしては、放送 開始前のチェック時に、一度だけモバイル端末の映像出力 が無信号になった事例が挙げられる。放送開始まで残り時 間が少なかったが、スタジオサブ内に予備端末を用意して いたため、慌てずに交換し無事に放送することができた。

図10 スタジオサブでの様子

This is a machine translated version of the original paper in Japanese (Published on J-STAGE). The next page is the original paper, which is expanded alternately with the translated version.

Because this is a machine translation, it may contain typographical errors, mistranslations, or parts of the paper that have not been reflected in the translation.

Please be sure to cite the original publication when referencing.

Furthermore, in a post-event verification, we found that when the video output of the mobile device becomes silent, a black rectangle appears on the Viz screen. This is due to the Frame Rate Synchronization feature, which synchronizes the output of the mobile device. This is because if the input signal to the Synchronizer (not shown in Figure 6) is interrupted, a black image is output, and when chromakey processing is performed in Viz, the black image without any green components is displayed as is. To eliminate this risk, the following measures were taken.

- Changed the drawing background on mobile devices from green to black
- •Changed Viz processing from chromakey to self-key. •Raised the minimum brightness level of "Virtual Mezamashikun" a little to prevent the pupils from showing through.

It is rarely used in television production these days.

By deliberately restoring the lost self-key, even if the mobile device malfunctions during a live broadcast and the video output loses its signal, "Virtual Mezamashi-kun" simply disappears from the screen, minimizing the impact on program production.

6. Effects and evaluation

The conventional "Mezamashi-kun" was a one-way production that simply played animation at a set time, but "Virtual Mezamashi-kun" allows two-way communication with the performers.

After the show started, we interviewed producers and directors of Mezamashi TV, and the following opinions were obtained: •His wide range of facial expressions fit the show perfectly. •When he bows, looks back,

and is perfectly linked to the anchor's movements, it feels so real that you feel as if you are really there. •He shows a wide range of facial expressions every time, which adds

an accent to the show.

It has become

- •The mouth and other parts move in conjunction with the operator's facial expressions,

 It feels like he's speaking lines to Al.
- Moving and talking has the effect of making the program more relaxing.

There were many positive reviews, such as:

Furthermore, since the system does not require specialized knowledge and can be operated freely and easily by anyone, some commenters have commented that "despite the new production, the workload of the director has not increased significantly." Furthermore, the director himself operates the program, leading to the creation of new and original segments. One example is "Smile Charge Janken," a segment that is broadcast every morning and makes the most of the expressive expressions and free movements of "Virtual Mezamashi-kun."

In addition, the official website of the program received the following comments from viewers:

There has been a great response.

- •Enjoy the interaction between the casters and Mezamashi-kun
 I'm looking forward to it
- •Virtual Mezamashi-kun appears on Mezamashi Saturday

I feel lonely because there isn't one

Figure 11: Facial expressions linked togethe

- In the Smile Charge corner, Mezamashi-kun also does facial stretches with me, which is very relaxing.
- A fun corner where Mezamashi-kun talks and moves
 I want you to make

7. Further evolution

Now that we've reached the one-year mark since the system began operation, our next focus is on the "voice." Until now, we've been recording the "Mezamashi-kun" voice once a week in the studio, then playing it back from a sampler in the substudio to broadcast the "Mezamashi-kun" voice. However, this method was problematic in that it didn't allow for any last-minute comment corrections, making it inflexible.

Therefore, they decided to start developing an application that generates the voice for "Mezamashi-kun" from text information. Using an open-source library, they developed a unique application and have been using it in actual broadcasts since April 2024. This new process eliminates the need for pre-recording and makes it possible to make last-minute changes to the wording. In addition, by providing a dedicated PC and entrusting it to the production staff, the work can be completed by the production staff alone, without the intervention of technical or CG staff. This allows for flexible direction and is expected to further increase the value of the program's content.

We aim to continue improving the viewing experience of programs and providing new appeal through "Virtual Mezamashi-kun."

It is.

8. Conclusion

The key features of "Virtual Mezamashi-kun," which was developed with the aim of "bringing Mezamashi-kun to the studio every day," are as follows: (1) It uses a mobile device and a gamepad, and is

Simple system

- (2) Operability that allows operation by a single production staff member
- (3) Respect the character image and create realistic facial expressions and limbs.

 The scope of the production

has been greatly expanded, including the Smile Charge Rock-Paper-Scissors game and dialogue with the performers, and has been well received by all involved parties. In addition, a new flow called Al voice has been added, allowing for more flexible and attractive use of the program to be realized by the production staff alone.

また、事後の検証でモバイル端末の映像出力が無信号になると、Vizでは黒い矩形が表示されてしまうことがわかった.これはモバイル端末の出力に同期をかけるFrame Synchronizer (図6での記載は省略)への入力信号が途切れると黒映像が出力され、Vizでクロマキー処理するとグリーン成分を含まない黒映像がそのまま表示されてしまうためである.このリスクを解消するために、次のような工夫を施した.

- ・モバイル端末での描画背景をグリーンから黒に変更
- ・Vizの処理をクロマキーからセルフキーに変更
- ・「バーチャルめざましくん」の最低輝度レベルを少し 浮かせて、瞳が透けないように調整

近年のテレビ番組の制作現場でほとんど使われることがなくなったセルフキーを敢えて復活させることで、本番中にモバイル端末が故障して映像出力が無信号になっても、「バーチャルめざましくん」が画面から消えるだけとなり、番組制作への影響を最小限に抑えることができている。

6. 効果と評価

従来の「めざましくん」は、決まった時刻にアニメーションを再生するだけの一方的な演出であったが、「バーチャルめざましくん」は出演者との双方向のコミュニケーションを取ることができる。「バーチャルめざましくん」の運用開始後にめざましテレビのプロデューサやディレクターに聞き取り調査を行った結果、次のような意見が得られた。

- ・豊かな表情が番組にハマっている
- ・お辞儀や後ろを振り返るなど、キャスターの動きと完 全にリンクする瞬間は、本当にそこにいるようなリア ルさを感じる
- ・毎回多彩な表情を見せてくれて、番組のアクセントに なっている
- ・オペレーターの表情に連動して口などが動くため、リ アルにセリフを話している感じがする
- ・動いてしゃべることで、番組がより和む効果がある など好意的な評価が並んだ。

また、専門知識が不要で誰でも自由で簡単に操作できるシステムのため、「新しい演出にも関わらず、ディレクターの仕事量は大きく増えていない」との感想も寄せられている。さらに番組を演出するディレクター自身が操作することで、新しい発想のコーナーも生まれている。その一例が「スマイルチャージじゃんけん」である。「バーチャルめざましくん」の豊かな表情や自由な動きを最大限活用したコーナーとして毎朝放送されている。

また、番組公式ホームページには、視聴者から次のような反響が寄せられている.

- キャスターの皆さんとめざましくんの掛け合いを楽し みにしています
- ・めざましどようびにバーチャルめざましくんが登場しないので寂しい

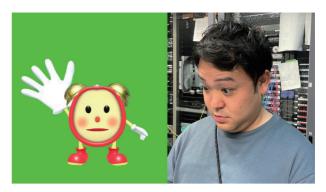


図11 表情が連動する様子

- ・スマイルチャージのコーナーで,めざましくんも一緒 に顔のストレッチをしているのがすごく癒されます
- ・めざましくんが喋ったり動いたりする楽しいコーナーを作ってほしい

7. さらなる進化

運用開始から丸1年にあたり、われわれが次に着目したのが"声"である。これまでは週に一度、スタジオで録音を行い、「めざましくん」の声を制作し、スタジオサブのサンプラーから再生することで「めざましくん」の声を送出していた。しかし、この方法では直前のコメント修正ができず、柔軟性に欠ける点が課題だった。

そこで、テキスト情報から「めざましくん」の声を生成するアプリケーションの開発に着手することにした。オープンソースのライブラリーを使用し、独自のアプリケーションを開発して、2024年4月から実際のOAで使用している。

この新しいフローにより、事前の録音作業が不要となり、 直前での文言変更にも対応可能となった。また、専用PC を用意し、制作スタッフに預けることで技術やCGスタッ フが介在することなく制作スタッフだけで作業が完結して いる。これにより、柔軟な演出が可能となり、番組のコン テンツ価値がさらに高まることが期待されている。

今後も「バーチャルめざましくん」を通じて、番組の視聴 体験を向上させ、新たな魅力を提供していくことを目指し ている。

8. む す び

「めざましくんを毎日スタジオに」を目指して開発した「バーチャルめざましくん」のポイントは以下の3点である.

- (1) モバイル端末とゲームパッドを採用した、限りなく シンプルなシステム
- (2) 制作スタッフ一人でオペレーション可能な操作性
- (3) キャラクタイメージを大切に、顔の表情や手足を生き生きと動かす工夫

スマイルチャージじゃんけんや出演者との掛け合いなど、演出の幅が大きく広がり、関係各所から大いに好評をいただいた。また、AI音声という新たなフローも加わり、より柔軟で魅力的な番組活用を制作スタッフのみで実現し

This is a machine translated version of the original paper in Japanese (Published on J-STAGE).

The next page is the original paper, which is expanded alternately with the translated version.

Because this is a machine translation, it may contain typographical errors, mistranslations, or parts of the paper that have not been reflected in the translation.

Please be sure to cite the original publication when referencing.

It is.

The procedural animation technique used in the newly developed "Virtual Mezamashi-kun" is a technology that was devised in the 1980s and has been known for some time. However, its application to a CG character that is controlled in real time during a live television broadcast is new, and the idea of effectively utilizing the sensor functions of mobile devices to allow for easy operation and realizing delicate movements will increase the degree of freedom of the characters that viewers love, and we believe this development will be positioned as a competitive advantage in the broadcasting industry.

Finally, we would like to express our gratitude to the production staff who operate the facility every day, and to the technical and CG staff on-site who provide detailed support.

眞武 亮介 2016年, (株) フジテレビジョン入社. ビデオエンジニアとして, 制作技術のさまざま番組を担 当. 現在はディジタル技術運用部に在籍し, 主にCG・ バーチャルを担当.

馬場 義士 2004年,(株) フジテレビジョン入社. カメラマンとして配属. 2014年, TD班へ異動. テクニカルディレクター・スイッチャーとして, めざましテレビや歌番組を担当.

落合 信人 (株) フジテレビジョン, CGプロデューサ, エンジニア. 映画やテレビでのVFXやCG映像の制作に従事. 近年, CGにプログラムを導入し, アプリケーション開発にも従事.

岡本 英士 1994年, (株) フジテレビジョン入社. CGデザイナー, CGディレクターを経て主にバラエティ, 情報番組のCGプロデューサに従事.

戸塚 晶久 1990年, (株) フジテレビジョン入社. 社会部記者を経て「めざましテレビ」ディレクターに. 報道・情報番組プロデューサや CG プロデューサを務め (株) NEXTEP出向. ている.

今回開発した「バーチャルめざましくん」に採用したプロシージャル・アニメーションの手法は、1980年代に考案され以前から知られている技術である。しかし、生放送のテレビ番組でリアルタイム操作するCGキャラクタに適用した点は新しく、モバイル端末に備わったセンサ機能を効果的に利用して簡単に操作できる仕組みと、繊細な動きを実現するアイデアは、視聴者に愛されるキャラクタの自由度を増し、放送現業において優位性のある開発として位置づけできると考えている。

最後に、毎日オペレーションを行っている制作スタッフや、細かいケアをして頂いている現場の技術・CGスタッフに感謝申し上げる.

真武 完介 2016年、(株) フジテレビジョン入社. ビデオエンジニアとして、制作技術のさまざま番組を担当. 現在はディジタル技術運用部に在籍し、主にCG・バーチャルを担当.

馬場 美生 2004年, (株) フジテレビジョン入社. カメラマンとして配属、2014年, TD班へ異動. テクニカルディレクター・スイッチャーとして, めざましテレビや歌番組を担当.

落合 信人 (株) フジテレビジョン, CGプロデューサ, エンジニア. 映画やテレビでのVFXやCG映像の制作に従事. 近年, CGにプログラムを導入し, アプリケーション開発にも従事.

岡本 英士 1994年, (株) フジテレビジョン入社. CGデザイナー, CGディレクターを経て主にバラエティ, 情報番組のCGプロデューサに従事.

