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Pixel-Wise Hyperspectral Image Classification

Abstract

Junkei Okada T, Yuko Ozasa '

Most state-of-the-art methods for pixel-wise hyperspectral image (HSI) classification are based on the Con-

volutional Neural Network (CNN). In this paper, we introduce a feature reconstruction module (FRM) into the CNN-based

network of pixel-wise HSI classification to improve classification accuracy. FRM can extract essential characteristics in the

original matrix of CNN features by low-rank approximation using matrix factorization. We compare the classification accuracy

before and after the introduction of FRM into the CNN-based network of pixel-wise HSI classification to validate its effec-

tiveness. Experimental results demonstrate this method improved classification accuracy. We also visualized and compared

the original CNN features and the reconstructed CNN features to evaluate which features contributed to the improvement in

classification accuracy.

Key words: hyperspectral image, pixel-wise classification, machine learning

1. Introduction

Pixel-wise classification is a fundamental task of re-
mote sensing that aims at assigning a semantic class
in Earth-observing satellite-based images such as hy-
perspectral images (HSIs). HSIs provide abundant de-
tailed information about the spectral properties of a
scene?. Pixel-wise HSI classification has been attract-
ing research attention in various applications, such as
agriculture'™, land-cover classification®, and other re-
lated tasks.

Traditionally, pixel-wise HSI classification has been
exploited in machine learning, including support vector
machine’® and k-nearest neighbor'®, while deep learn-
ing is currently attracting attention. In particular, Con-
volutional Neural Network (CNN) is widely used deep
learning approach for pixel-wise HSI classification.

In semantic segmentation of RGB images, a previ-
ous work reported that reconstructs a matrix of CNN
features into a low-rank matrix, resulting in improved
segmentation performance”. This work used matrix
decomposition to decompose the matrix into two or
more low-rank matrices that represent the data’s essen-
tial characteristics'® and reconstruct the matrix using
these low-rank matrices. The CNN feature after recon-

struction is of lower rank than the original CNN fea-
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tures while preserving its essential characteristics. The
CNN with its feature reconstruction improved the per-
formance of semantic segmentation.

In this paper, we introduce the CNN feature recon-
struction for the CNN-based pixel-wise HSI classifica-
tion to improve classification accuracy. We are the first
to introduce the CNN feature reconstruction for this
task. To validate the effectiveness of this method, we
compare before and after the introduction of CNN fea-
ture reconstruction in classification accuracy on three
HSI benchmarks of land-cover classification.

Furthermore, we evaluate the effects of introducing
the CNN feature reconstruction by comparing feature
map visualization, computation time, and number of
parameters. We visualized and compared original CNN
features with reconstructed CNN features to discuss
which features contributed to the improvement of classi-
fication accuracy. In the remote sensing field, on-board
processing has been attracting attention in order to
minimize satellite-ground communication”. Given the
importance of efficient processing in this field, we also
evaluate its cost in terms of computation time and the
number of parameters.

Experimental results demonstrated the effectiveness
of introducing the CNN feature reconstruction into
CNN-based pixel-wise HSI classification in terms of
classification accuracy and indicate its potential for fu-
The CNN
feature reconstruction has been shown to be effec-
tive in tasks with RGB images that have higher di-

ture applications in remote sensing tasks.



Paper » Evaluation of Deep Feature Reconstruction for Pixel-Wise H yperspectral Image Classification

ZDHFER, KRHSH A F 05 DERITTANR
MV TF—=REANLUTTE, BEART Y
r—>a DYy VERLDHSI 5 FEDMEEE M
EXIRZTENTEX B, REXDELERIL,
Y7 & IVEARIDHS 1434812 CNNS RS A 2 A
L2 kb, BERINA-ONNEEIZ L 5058
EDEEIZES U EDEEMII DN T DES
Thd,

2. BHERRZ

2. 1 €7 2IVELIOHSI4%E

BfE, RITHEDZ L, (NR—2ADFE%E FH
W= T 2IVERIDHS I DRI S 2 LT TW5,
HusNE, BAAAE, =) VB, waE
fEEE SO IRTIWEREL, 2B=2—F )%
W RT =R R—- IR RV VR L
DEBVEEZRUZ, Sidikes19F, BRoh
EERT—RIIHLUTAY NT—7a=w N
BIEXOF 2 D ICHEEAHLER & B U 72O
HI¥EER R v b7 — 27 (dPEN) 2482 L /=, dPENIX]
RITONND DA D — R 7 B 22 iR R IEE L
72 UMU. NNEFEENSHHE2MEL T
ERE2RLEIE2HEATRINTOARY,

2. 2 1THI DR

TR FRIL. BRI X =175 &2 W < DDDERY
FHIDORBICRB A RT 5, BATHIDOENS T
—REBERTZ IO ARIRETD L, 1755
fREMEE L UTEL, Zhik 8lEllT—40
BIEREN, TN L > THEINER
DIFFIDOEMNSEITTEX DI L 2RLTWS,

5z 6Nnk7F—2575 X = [xq, - -, X, J€ RIXP
ThdLd5, —RLEEIX XRIN/-ERT
DEBH 2R & 72 IFEHR DO EFOFNFETH I &
THb, TROL, HEFHD = [dy, - -, d. J€ RI*"
ERIETBHCER™" NWEEL, XIIRXRATRE S,

X=X+E=DC+E, (1)

ZZT, X TR FHAES VI EER, E € RIXN
BHET S ) 1 X THTH5S, 2T, BrIniir
FiXid, KRDOEDRIES V7 DOWBEE2ED LIRET 5,

rank(X) < min(rank(D), rank(C)) < r < min(d, n).
(2)

191

HEARDS >V 71—z + n)r < dnt® 423 X51C
EiInb,

2. 3 VRO EEE

Geng &7 iZHamburger & XN DI EEBRET Y 2
— )V (FR) Z42ZE U =, TDEY 2—IUE, TV
U9 21KT > 7175 IfERE R g X, (NNX—
ANy N7 =728 2 KBRS O % 8
ZeT, KEBHWXIREZETIVILTZ I ENTE
B, NYN—=H—=Z1DDIFHI R L 2D DG E
BIINS7 B, NUN—F—I3ETANLIERY 2*n
AR AW, ERIXD L TRBIZERMIZEZR L. RIZ
FH o EENE FWTIRS v 73580 B %X,
BEICHHE U2 ES % 5O AR, ERY 2T
HAIZE#T 5,

H(Z) = W,,_;"-/I(MZ}, (3)

Z 2T, MIZEARERBEREE BT T 2 -ODTFIHRT
Hbd, BBIZ, ZOFY NT—=7F A%y TEHR T 2
HA35,

Y = Z +H(Z). (4)

M&E 2y N —ZIZBEXE5-0121F KET7 IV
T XLMED &S ITHRE FRIET 20NN EER
FIEETH B, RIESTOY R %ERXRT 3 7= DRELER
RERELT, YAV Y b=a—F)xy hT—7
D& > BEEDOTRE N H S, UL, FVE LI
MEL X =R FTINIEREORBEEHEL U,
ERIZITATANEET B -DMEEMET 5, T2
T, MOBRELAT Y TTHAT A2 RRT S
DT, 12Ty 7OHED ##EAT 5,

3. Methods

3. 1 B RINEADHSISEND O A | ¥k
BAIOHSIDFE A Y MU =21k, KRET7RIVIZTRL
MEZoNISIZAVWTEE NS, N BoESE (x
L, x 2,.xy ) 1% &KEE x; 2 B HEONY R (x;

€ RB ) ZHb. HSI XeERBMW noEINX N, AN
EUTHAINS, 22T, HiZEX, WiE. BlgN
YV RETHD, ENMEDERIZNGT SMED Z b {y;
, V2, 9 1D EZ 60, Vyie(l, 2,.C}, ZTZTCE
I ATHDB,

CIRIVEMNOHSI A Y NU—I ik Af L U,
FHEzL 2 MET 5, HEINREEHELR BPE
V7 vy ABEKIZEY). 75 ARECOTFHIS
NV AT S, KX Tl ¥ 27 VB OS]
DHEIZIRTEEARAAR= 2 —F V3w b T —2 (1D-CNN)
AT 5,



Paper » Evaluation of Deep Feature Reconstruction for Pixel-Wise Hyperspectral Image Classification

mensionality than the spectral data of a single pixel.
This method could improve performance in pixel-wise
HSI classification for various applications, even with
higher-dimensional spectral data from next-generation
HS cameras as input. The main contributions of this
paper are the introduction of CNN feature reconstruc-
tion into pixel-wise HSI classification and the discussion
of which features contributed to the improvement of
classification accuracy by reconstructed CNN features.

2. Related Work

2.1 Pixel-Wise HSI Classification

At present, most previous research focuses on pixel-
wise HSI classification using CNN-based methods. Hu
et al.” proposed a 1D CNN which contains a convolu-
tional layer, a pooling layer, and a fully connected layer,
and showed better accuracy than two-layer neural net-
work and support vector machine classifier. Sidike et
al.'® proposed a deep Progressively Expanded Network
(dPEN) that introduced progressive expansion to in-
crease the number of network units to the limited train-
dPEN outperformed 1D CNN? and other

popular machine learning methods. However, there has

ing data.

been no attempt to extract the characteristic features
from the CNN features to improve the classification ac-
curacy.

2.2 Matrix Decomposition

Matrix decomposition factorizes the observed ma-
trix into a product of several sub-matrices. Assuming
the process of generating data from a product of sub-
matrices, matrix decomposition also acts as an inverse
operation. This indicates that the latent structure of
the observed data can be recovered from the product of

sub-matrices decomposed by matrix decomposition™.

Suppose that the given data is a matrix X

[Xl)"'

there is a low-dimensional subspace or a union of mul-

,X,] € R¥™. A general assumption is that

tiple subspaces hidden in X. That is, there exists a
,d,] € R¥™" and corre-

sponding C € R"*™ that X can be expressed as

dictionary matrix D = [dy,---

X=X+E=DC+E, (1)

where X € R¥*™ is the output low-rank reconstruc-
tion, and E € R?*" is the noise matrix to be discarded.
Here we assume that the recovered matrix X has the

low-rank property, such that

rank(X) < min(rank(D), rank(C)) < r < min(d, n).
(2)
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The rank r of the factorization is generally chosen so
that (d +n)r < dn'®.

2.3 Deep Feature Reconstruction

Geng et al.” proposed a feature reconstruction mod-
ule (FRM) called Hamburger. This module can model
global context by solving the low-rank matrix comple-
tion problem for deep features and guide extract of
global features in CNN-based networks. Hamburger
consists of one matrix decomposition and two linear
transformations™. Hamburger first maps the input
Z € R%*" into feature space with a linear transforma-
tion W; € R4¥% then uses matrix decomposition M
to solve a low-rank signal subspace, and finally trans-
forms extracted signals into the output with another

linear transformation W, € R%=*4,

H(Z) = W MW Z), (3)

where M is matrix decomposition to recover the clear
latent structure. Finally, this network outputs bmY via

skip connections,

Y = Z + H(2). (4)

To fuse M into the networks, a crucial issue is how
the iterative algorithm back-propagates gradients. As
the standard choice to differentiate the iterative pro-
cess, there is the optimization of Recurrent Neural
Network-like behavior. However, randomly initialized
factor matrices require multiple iterations, which will
degrade performance due to the vanishing gradient in
practice. Therefore, we apply the one-step gradient™ to
conquer the gradient vanishing during the optimization
step for M.

3. Methods

3.1 Process of Pixel-Wise HSI Classification

A pixel-wise HSI classification network f is trained
using HSIs with labels given to each pixel. N pix-
els (x1,X2,..xn), where each pixel x; has B bands
(x; € RB), are selected from an HSI X € RBXHXW
and used as input. Here, H is the height, W the
width, and B the number of bands. Each N pixel
has corresponding N labels {y1,y2,...yn} are given and
Vy; € {1,2,...C’}, where C' is the number of classes.

The pixel-wise HSI classification network f takes x;
as input and extracts features z;. The extracted fea-
tures z; output predictive labels ¢; of class number C
by linear transformation and softmax function. In this
paper, a one-dimensional convolutional neural network
(ID-CNN) is used for the pixel-wise HSI classification
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Fig.1: A visual example of process of 1D-CNN.

network f.

In general, the 1D-CNN extracts a feature of an input
spectral using various filters and obtains a feature map
for each filter. These filters move across the input spec-
tral, computing dot products between the filter weights
and the band values. We can obtain various feature
maps by using multiple filters. Fig.1 shows a visual
example of process of 1D-CNN with spectral data as
input.

3.2 Introduction of CNN Feature Recon-

struction for CNN-Based Pixel-Wise
HSI Classification

We introduce the FRM into the pixel-wise HSI clas-
sification network f using 1D-CNN. The FRM has the
same structure as Hamburger” and is introduced be-
tween the feature extraction part and the classifier of
1D-CNN. As a CNN-based pixel-wise HSI classifica-
tion method, we employed the method of state-of-the-
art (SOTA) method, dPEN'®, and a representative
method, Hu et al.”. Both methods use 1D-CNN, and
the input is the 1D spectral data of the pixel in the
HSI. Fig. 2 illustrates the introduction of FRM into the
1D-CNN.

We use non-negative matrix factorization (NMF)*®
as M to update the dictionary and the coefficient ma-
trices. Consequently, X is decomposed into two non-
negative matrices D and C'. Mathematically, the opti-
mization process can be formulated as follows:

min | X — DC|*, st. D=0, C >0, (5)
D.C

D and C are updated according to following the Mul-

11).

tiplicative Update rules

(DT X)ap
(DTDC),,.’

(XCT)ia
(DCCT),;,
(6)

Cau — Cau Dia <— Dia
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4. Experiments

4.1 Dataset

We conduct experiments on the following three
datasets which are Botswana, Indian Pines, and Uni-
versity of Pavia. The details of these datasets are de-
scribed as follows.

The Botswana (BW) dataset'® was acquired by
the NASA EO-1 satellite over the Okavango Delta,
Botswana in 1996 to monitor regular flood events
and associated vegetation responses, which contains 14
land-cover classes. This dataset comprises 1496 x 256
pixels with 242 spectral bands in the wavelength range
from 400 to 2500 nm, but only 145 spectral bands are
used after removing noisy and water absorption bands.

The Indian Pines (IP) dataset®? was gathered by
the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) over the Indian Pines test site in Northwest-
ern Indiana in 1992 to support soil research, which con-
This
dataset consists of 145 x 145 pixels and 224 spectral

tains 16 mutually exclusive vegetation classes.

bands covering the range of 400 — 2500 nm. By remov-
ing the water absorption region, 200 spectral bands are
retained.

The University of Pavia (UP) dataset'® was acquired
by the Reflective Optics System Imaging Spectrome-
ter (ROSIS) sensor during a flight campaign over the
university campus at Pavia, Northern Italy in 2001 to
exploit hyperspectral data for urban land cover analy-
sis by HySens project®. This dataset contains 9 land-
cover classes from urban areas. The spatial resolution
is 610 x 340 pixels with 115 spectral bands in the wave-
length range of 430 — 860 nm. The spectral bands in-
fluenced by water absorption were removed, and there
were 103 bands remaining in the dataset.

4.2 Experimental Setup

For a fair comparison, we randomly select 205, 95,
and 947 samples per class of the BW, IP, and UP
datasets, respectively, except for those small classes
containing few labeled samples. All the experiments
were conducted under a split proportion of the samples
from each class for training (60%), validation (20%),
and testing (20%). Note that all competing methods
used the same training, validation, and testing sam-
ples, and all input data normalized each band into [0, 1]

called Bandmax-min®, expressed as

2, = x;; — min(z.;)

max(z.;) — min(z.;)’
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- Introduction of FRM7 | 96.99 86.38 94.44
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Fig.2: Tlustration of the network architecture, which depicts the introduction of FRM into 1D-CNN. (a) The
overall network architecture, which indicates the positions of CNN layers, FRM, and the classifier. (b) The process

of matrix decomposition in FRM, which shows how matrices are decomposed.

where x; is the original pixel vector, x;; is the scalar
value of the i-th pixel in the j-th band, z7; is the nor-
malized pixel value, max(z.;) is the maximum value in
band j, and min(z.;) is the minimum value in band j.
That is, each pixel vector x; is normalized band-wise.
We note that CNN-based models such as Hu et al.
9 and Sidike et al.'®, which introduce FRM, change
the activation function of the hidden layer from a hy-
perbolic tangent function to a Rectified Linear Unit
(ReLU). Since we adopted NMF as FRM’s matrix de-
composition, the output of the middle layer input to
NMF must satisfy the non-negative constraints. CNN-
and Sidike et al.

hyperbolic tangent function that converts input values

based networks of Hu et al. use a
from —1 to 1 as the activation function of the hidden
layer, so negative values ignored by FRM may affect
classification. Therefore, ReLU is used as the activa-
tion function to avoid negative values because ReLU
converts the input value u to u = 0 for values u < 0, as
in max(u, 0).

During the network training, the number of epochs
is set to 1000 epochs with a batch size of 64, and the
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Table 1: Comparison of classification accuracy (%)

Dataset
Methods
BW P UP
Hu et al.? 93.23 84.35 92.34
- Introduction of FRM™ | 93.98 88.62 93.57
dPEN (Sidike et al.'®) | 93.61 83.33 92.87
- Introduction of FRM”) | 96.99 86.38 94.44

stochastic gradient descent is adopted to reduce the loss
function with a learning rate of 0.001 and a weight de-
cay of 107°.

4.3 Classification Accuracy Evaluation

To evaluate the effectiveness of FRM, we compared
the classification accuracy before and after introducing
the FRM to CNN-based networks with the BW, IP,
and UP datasets. The experimental results are shown
in Table 1. Introduction of FRM achieves the best re-
sults in all datasets. It is noticeable that only introduc-
ing the FRM can improve the classification accuracy
of dPEN'®, the SOTA method. For instance, compar-
ing the methods introducing the FRM into dPEN and
original dPEN'®on the BW, IP, and UP datasets, the
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Fig. 3: Comparison of confusion matrices.

classification accuracy is 3.38%, 3.05%, 1.57% increase,
respectively. Therefore, it indicates that the introduc-
tion of the FRM into the pixel-wise HSI classification
network can effectively improve performance in terms
of classification accuracy.

On the IP dataset, the confusion matrices before and
after the introduction of the FRM into the 1D-CNN of
Hu et al. were compared and shown in Fig.3(a) and
Fig.3(b), respectively. The F1 score for Class 1, which
had the most increase in correct prediction, improved
from 0.6667 to 0.8140 before and after the introduction
of the feature, respectively. Thus, the introduction of
the FRM reduced the number of false positives and false
negatives, indicating a more accurate evaluation.

4.4 Comparison of Feature Maps for Discus-

sion of Improved Classification Accuracy

In order to discuss what features were affected by the
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Table 2: Comparison of training and inference times

and number of parameters.

Methods Training (s) Inference (s) # Param.
Hu et al.”) 86.4 5.33 4.562 x 10°
- Introducti
mirocnetion 194.4 5.69 4.592 x 10°
of FRM™)
dPEN 228 5.74 1.827 x 107
- Introducti
BN 429 6.40 1.828 x 107
of FRM

reconstruction of the FRM improving the classification
accuracy, we visualized the feature maps obtained from
1D CNN of Hu et al.” introducing the FRM on the
BW, IP, and UP datasets, as shown in Fig. 4.

The feature maps for the BW dataset are shown in
Fig. 4 (a2), (a3). In the visualization of the CNN fea-
ture (Fig. 4 (a2)), most feature maps highlighted the 12
to 40 range, and some highlighted the entire range. In
the visualization of FRM’s output feature (Fig. 4 (a3)),
the feature maps that highlighted the entire range were
reduced, leaving the feature maps that highlighted the
12 to 40 range. Matrix reconstruction by matrix de-
composition also has the effect of removing noise®'?.
We consider that the feature maps that highlighted the
entire range were reduced since they were determined
to be noise during the reconstruction of the FRM.

The feature maps for the IP dataset are shown in
Fig.4 (b2), (b3).
(Fig.4 (b2)), most feature maps highlighted the entire

In the visualization of FRM’s output feature

In the CNN feature visualization

range.
(Fig. 4 (b3)), most feature maps highlighted the entire
range, but some of the feature maps had decreased val-
ues. We consider that the FRM reduced some values in
the feature maps since the FRM reconstructed them to
emphasize a specific range of feature maps.

The feature maps for the UP dataset are shown in
Fig.4(c2), (c3). We consider the visualization results
for this dataset to be similar to the BW dataset. There-
fore, we consider that some feature maps were deter-
mined to be noise during the reconstruction.

These results indicate that the feature map recon-
structed by the FRM emphasizes a specific range more
than the original feature map. Therefore, we consider
that the FRM enhanced the feature maps of a specific
range, and these feature maps contributed to the im-
provement of classification accuracy.

4.5 Comparison of Computation Time and

Number of Parameters
We compare the variation in computation time and

number of parameters with the introduction of the
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Fig.4: Feature map visualization of Hu et al. introducing the FRM on three HSI dataset. The first column show

the pixel spectra. The second column show the cnn feature map before input the FRM. The last column show the

feture map of output the FRM.

FRM?™. Table 2 shows the computation time and the
number of parameters before and after the introduction
of the FRM. The training time is the time required to
train 100 epochs. The inference time is the time re-
quired to predict the labels of the test data.

Table 2 shows that the number of parameters in-
creased with the introduction of the FRM, but the in-
crease was small since the FRM has fewer parameters
than the original network. The training time required
for Hu et al.” was about 2.25 times longer, and for

dPEN'® was about 1.88 times longer. We consider
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that the models with the FRM took longer computation
time since the matrix decomposition was updated dur-
ing training. The inference time was about 1.07 times
longer for Hu et al. and about 1.12 times longer for
dPEN when the FRM was introduced. Introduction of
the FRM did not lead to a significant increase in the
number of parameters in either method.

The on-board processing only performs inference, not
training, so the increase in inference time is more
problematic than the training time. Since the increase

in the number of parameters was suppressed while the
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increase in inference time was also suppressed, we be-
lieve that the introduction of the FRM is also suitable
for on-board processing for the remote sensing commu-

nity.
5. Conclusion

In this paper, we evaluated the effectiveness of the
FRM™ in a CNN-based pixel-wise HSI classification
network in terms of classification accuracy. In the ex-
periment, we introduced the FRM to a representative
CNN-based method and a SOTA method on three HSI
datasets and compared the classification accuracy be-
fore and after the introduction of the FRM. We found
that the introduction of the FRM improved the classifi-
cation accuracy of both methods on all datasets. There-
fore, the introduction of the FRM is effective in improv-
ing classification accuracy for pixel-wise HSI classifica-
tion. We also evaluated the effects of introducing the
FRM by comparing feature map visualization, compu-

tation time, and number of parameters. Our future

work is to further analyze the features reconstructed by
the FRM and to develop a novel FRM that reconstructs

features to be more appropriate for each task.
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