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Discriminating Car License Plate Numbers on Low

Resolution Using Sparse PCA

Ryotaro Ooe , Kazuhiro Fujita (member)’, Koji Shinomiya

Abstract License plates captured in surveillance videos often have insufficient resolution, making it difficult to recognize

the numbers. In this paper, we propose a novel method for license plate number recognition using sparse PCA coefficients

and Naive Bayes classifier. The proposed method is applied to low-resolution license plate images, and its performance is

compared with two conventional methods: moment features with Bayes classifier and PCA coefficients with naive Bayes clas-

sifier. The evaluation results, including the first-candidate recognition rate, the recognition rate up to the second candidate,

and the classification cross-entropy, show that the proposed method achieves the best performance.

Key words: License plate number recognition, Low-resolution images, Sparse PCA, Naive Bayes classifier

1. Introduction

In criminal investigations, license plates captured by
surveillance video cameras are often small and have low-
resolution number characters, making it difficult for hu-
mans to identify them. Specifically, the number of pix-
els per number character can be as low as 4 pixels ver-
tically and 2 pixels horizontally, making it challenging
to recognize. Traditional recognition methods" assume
sufficient resolution and good imaging conditions. How-
ever, these methods are not effective for low-resolution
number plate images because the inherent geometric
features of the characters are weakened. Yoshikawa et
al.? proposed a fuzzy inference-based method for low-
resolution license plate number recognition. However,
this method does not distinguish between 707, 71”7, and
78" due to their low-resolution ambiguity, categorizing
them as a single group. This approach does not meet
the requirements of criminal investigations. Shinomiya
et al.¥ proposed a method using moment features for
low-resolution license plate number recognition. This
method extracts five features representing the geomet-
rical properties of low-resolution license plate numbers:
skewness and flatness in both horizontal and vertical
directions, and the ratio of standard deviations in hor-
izontal and vertical directions. These features are used

for Bayesian classification. However, this method has
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limitations, as shown in their experimental result where
73" was incorrectly classified as 797, 7”7”7, and 75" before
being correctly identified as ”3” in the fourth candidate.
Tsuji et al. conducted a study on identifying hiragana
characters instead of numbers on low-resolution license
plates to improve identification accuracy.

In this study, we propose a method using eigen im-
ages, which has been successfully applied to face recog-
nition”. The Eigen Face method performs Principal
Component Analysis (PCA) on training face images
and uses the Figen Faces, which correspond to the
eigenvectors, in order to calculate the PCA expansion
coefficients of the target face image by taking the inner
product with eigen vectors. These coefficients are then
used as features for classification. We refer to the eigen
images corresponding to numbers as " Eigen Numbers”
since we are dealing with numbers.

Similarly, we can perform PCA on low-resolution li-
cense plate images and use the PCA expansion coef-
ficients as features for classification. However, in this
study, we propose a method that performs Sparse PCA
on low-resolution license plate images and uses Sparse
PCA expansion coefficients as features. The motiva-
tion behind using Sparse PCA-based Eigen Numbers is
to obtain features that reflect the local characteristics
of the images instead of the global characteristics which
is extracted by PCA-based Eigen Numbers.

In the experimental results, we compare the recog-
nition results using PCA-based Eigen Numbers and
Sparse PCA-based Eigen Numbers.
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2. Training Image Dataset

In this study, the low-resolution number images
(256 x 128 pixels) which are generated by the low-
resolution image generation method proposed by Shi-
nomiya et al.® are used as training image data.

Specifically, the low-resolution image {Z, } is as-
sumed to be a smoothed version of the image {Z, ., }
which is pixelized from original image {z, »} . The
original image of the license plate number is pixelized
using the following equation:

W-1Ww-1

xmn — W2 Z Z m— mo W+k[n "O]W+l (1)

k=0 [=0

where W is a parameter that controls the pixelizing fac-
tor, and myg, ng are offset parameters for pixelization.
After downsampling, the image is smoothed using the

following equation:

Zbkzxm k1 (2)

k+2 l+2
b, = / / b(u,v)dudv (3)
l**

Tm,n =

%
b(u,v) G (4)
u,v) =
0, elsewhere

where r is a smoothing parameter.

In this study, we generated training low-resolution
images with a pixelizing factor of W = 32 and a smooth-
ing parameter of r = 16. Fig. 1 shows some of the
training low-resolution images which are used in this
study. For each number, 1,024 images with different
shifts were used as training data, resulting in a total of
10,240 images.

3. Preprocessing by Center Alignment

Image misalignment can be a problem when perform-
ing Sparse PCA. Therefore, in this study, we perform
the following center alignment as a preprocessing step.
Specifically, we shift the center of gravity of the target
number image to the center of the image.

First, we calculate the center of gravity pq, ps of the
=0,1,2,..., M —
N — 1} using the following equations:

M—-1N-1
/11:{ NZmemn+05J (5)

target number image {Zp, n;m
0,1,2,...,

1,n=

m=0 n=0

M—-1N-1
{MNZZ xmn+O5J (6)

m=0 n

M2

where {i,} is the image which is normalized from

the target number image {Z,,,} so that its sum is 1,
defined by the following equation:

Fmn = N (7)

2. D dman

m=0 n=0

The image {x/, ,,} with the center of gravity shifted
to the center of the image (4,%) is defined by the
following equation:

Lonn = xm—/q—i—%,n—pg-}% (8)

4. Recognition Using Sparse PCA Ex-
pansion Coefficients

In face recognition, Principal Component Analysis
(PCA) has been used to extract features from face im-
ages. The eigenvectors of the PCA, also known as Eigen
Faces, are used in order to extract features for Bayesian
classification.

While PCA-based eigenfaces represent global fea-
tures of a face, Sparse PCA-based eigenfaces capture
local features. By using Sparse PCA expansion coeffi-
cients, we can obtain a feature vector that reflects only
local features, such as those of the eyes. This is because
the expansion coefficient for an eigenface representing
the eyes is obtained by taking the inner product of that
eigenface and the target image, thus excluding features
other than the eyes. Based on this, we expect that by
applying Sparse PCA to low-resolution number plate
digits, we can obtain eigenimages that represent local
features of the image. Moreover, by using the expansion
coeflicients, which are the inner products of these eigen
images and the target image, we can obtain feature vec-
tors that capture the features of the corresponding local
parts.

PCA can also be employed to extract features from
low-resolution license plate number images. However,
this approach captures only the global features of the
number image. In this paper, we propose a method for
license plate number recognition using Sparse PCA ex-
pansion coefficients as features. We believe that local
features are important for low-resolution license plate
In the

experimental section, we compare the recognition re-

number recognition, based on our experience.

sults using PCA expansion coefficients and Sparse PCA
expansion coefficients, and discuss the results.

By applying Sparse PCA to a set of given images x,,,
the eigenvectors uy ( hereinafter referred to as Eigen

Numbers ) and expansion coefficients {c,, ,} is obtained
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in order to minimize the following objective function:

1 2
2 E || — E cnpukl]” + E |Cn,k
n k n,k

subject to]

uk|‘2=1

(9)

where « is a parameter that controls the sparsity. Fig. 2
shows the Eigen Number images obtained by PCA and
Sparse PCA. As shown in Fig. 2, the eigen images ob-
tained by Sparse PCA represent the local properties of
the images.

4.1 Features for Recognition

For a low-resolution license plate number image ,
the expansion coefficients {C} } can be obtained by eval-
uating the inner product with the Eigen Numbers {uy }

as follows

Cp =z uy (10)

These expansion coefficients {C)} are used as features
for recognition.

4.2 Naive Bayes Classification

The feature vector y is defined as follows using the
expansion coefficients {C}} obtained by expanding the
target image x using the Eigen Numbers {uy}.

Y= (003017"'7CK—1)T (11)

Low-resolution license plate numbers are classified us-
ing the Naive Bayes classifier shown below, which learns
from features extracted from training images gener-
ated by simulation beforehand. The classes {wj;l =
0,1,2,...,9} correspond to the license plate numbers
{0,1,2,...,9}. Using Bayes’ theorem, the posterior
probability P(w;|y) of class w; given feature vector y

is as follows:

P(wi)p(ylwr)

Plaly) ===

(12)

Assuming the independence of the features {C}} i.e.,

the naive assumption, we have the following:

121

5 6 7 8

Training Image Dataset

K-1
P(w) [T p(Cklwn)
k=0

Plwily) = )

(13)

Furthermore, assuming that P(w;) is the same for all

classes, we obtain the classification result w; as follows:
K-1

Gy = argmax kl_[o p(C|wr) (14)

5. Recognition Experiment

5.1 Recognition Experiment on Training Im-

ages

We divided 10,240 sample low-resolution license plate
number images into 5,120 training images and 5,120 val-
idation images. We then obtained the Eigen Numbers
for the training images using PCA and Sparse PCA,
trained a Naive Bayes classifier based on the expansion
coefficients, and carryed out a recognition experiment
on the validation images. We evaluated the accuracy of
the recognition. Fig. 3 shows the results of the accuracy
evaluation for dimensionalities of 1 to 20 for both PCA
and Sparse PCA. From this figure, it can be seen that
the accuracy of both PCA and Sparse PCA satuate at a
dimensionality of 8. Furthermore, the accuracy fluctu-
ates slightly above and below this point. Therefore, we
set the dimensionality of both PCA and Sparse PCA to
8.

Fig. 2 shows the Eigen Numbers obtained using PCA
and Sparse PCA with a dimensionality of 8 for 5,120
training images. As can be seen from the figure, the
Eigen Numbers obtained by using PCA represent the
overall characteristics of the entire image, while the
Eigen Numbers obtained by using Sparse PCA (a = 1)
represent the local characteristics of the image.

Table 1 shows the confusion matrix of the classifica-
tion results by using the Sparse PCA expansion coef-
ficients as features for 5,120 validation images. Some

”(0”s were misclassified as ”8”s, some ”"2”s were mis-
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classified as ”17s or ”7”s, some ”3”s were misclassified
s 717s or ”7”s, some ”5”s were misclassified as 79”s,
some ”6”s were misclassified as "4”s, some ”7”s were
misclassified as 717s, some ”8”s were misclassified as
74”s, and some "9”s were misclassified as ”75”s. The
overall accuracy was 0.932.
5.2 Evaluation of Classification Results
In addition to the accuracy rate, the categorical cross-
entropy defined by the following equation is also em-
ployed to evaluate the classification results for real num-

berplate digit images.

9

ZZ ZzotﬁjlogP w;ly;)
ti; 7T

i g=0

E= (15)

where y; is the feature vector ( PCA / Sparse PCA ex-
pansion coefficient) obtained from the target image x;,
t;; is the one-hot encoding of the correct class corre-
sponding to the i-th target image, and is defined by the

following equation.

122

Eigen Number

Fig.4 Actual Low-Resolution Numberplate Image
9173

Fig.5 Actual Low-Resolution Numberplate Image
»4685”

by = 1, wjis t}'le correct class (16)
0, otherwise

5.3 Experiment#1 of Actual Low-Resolution
Number Plate Image Recognition

Table 2, 3, 4, 5 shows the classification results for two
actual low-resolution number plate images® ( Fig. 4 and
Fig. 5 ) using our proposed methods.

In the case of using PCA expansion coefficients, ”9”
was classified as the second candidate with a low prob-
ability of P(wg) = 0.017, and ”3” was classified as the
third candidate with P(ws) = 0.150. However, all other
digits were correctly classified as the top-1 candidates.

When SparsePCA expansion coefficients were em-
ployed, ”9” was again classified as the second candidate
with a low probability of P(wg) = 0.008. All other dig-
its were also correctly classified as the top-1 candidates.

It is worth noting that Shinomiya’s method® also clas-
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G 0 0 0 0 2( 0 492 0 0 0 0.961
7 4] 22 0 0 a 0 490 0 1] 0.957
8 0 0 0 0 23 0 0 0 489 0 0.955
9 4] 0 0 [}] 0 3 0 [}] 0 07 0,990
0.932

Table 2 PCAIZE D 79173 "D¥IBIFER
T
Plwn) 0.000 0000 0.000 0.000
Plw1) 0000 1000 0.000 0000
Plws) 0.000 0000 0.000 0.000
P(ws) | 0,000 0.000 0.000 0.150
Plwy) 0.000 0000 0.000 0.000
Plwg) 0.983 0000 0,000 0.609
Plwg) 0.000 0000 0.000 0.000
Plws) 0000 0.000 1.000 0.238
Plws) 0.000 0000 0.000 0.000
P(we) | 0,017 0.000  0.000 0.003
Table3  SparsePCA(a=1.0)12X%% "9173 "D¥IBHER
ng e nT T
Plwn) 0.000 0000 0.000 0.000
Plwy) 0.000  1.000  0.000 0.000
Plwsz) 0.000 0000 0.000 0.000
Plws) 0.000  0.000  0.000 0.986
Plwg) 0.000 0000 0.000 0.000
P(ws) 0.992  0.000  0.000  0.002
Plwg) 0.000 0000 0.000 0.000
Plws) 0.000  0.000  1.000 0.012
Plws) 0.000 0000 0.000 0.000
Plwg) | 0.008  0.000 0.000  0.000

#4 PCAIC LD [4685) @#UEUF%
4" e e man

Plwa) | 0.000  0.000  0.019  0.000
Plwy) | 0,000 0,000  0.000  0.000
Plws) | 0,000 0,000 0.000  0.000
Plws) | 0,000 0,000  0.000  0.000
Plwa) | 0.965 0.000  0.000  0.000
P(ws) | 0,000  0.013 0.000 0.999
Plws) | 0.035 0.987 0.000 0.000
Plwy) | 0,000  0.000  0.000  0.000
P(wsg) | 0.000  0.000 0.981 0.000
Plwg) | 0,000  0.000 0.000 0.001

P (w3 ) =0.005C 3] &ZEMEMICHEL /-
ZEIHFEBRIZET S, LML, ThlS o=
FIARThy FUEf L UTEL S SEEI N,

BFN Ny TURRICHFE I NZHETE, P (
w 1) DEFREISEMLTIAEENHZ Z
CIZERTDIULNEETHD, ENMEVEE,
top- B & top-2ABFEDZEIZ/IN I N T LN,

Table 5 SparsePCA(a=1.0)I2k 2 74685 "D¥IBIHEE

T4] l6] [EX I51
Plwo) | 0.000 0.001 0.025 0.000
Plwy) 0000 0.000 (0.000 0,000
Plw2) 0.000 0.000 0.000 0.000
Plws) 0000 0.000 (0.000 0,000
P(ws) | 0979 0.000 0.001  0.000
Plws) U000 0.000 0,000 w
P(ws) | 0.018 1000 0.000 0.000
Plwy) 0000 0.000 (0.000 0,000
Plws) 0.003 0.000 m 0.000
Plwsg) 0000 0.000 (0.000 0,000

Table 6 "9173, "4685 "D#EROHF IV —FlrnArzy

fobE—
Top-1 Top-2 Categorical

| Accuracy  Accuracy Cross

| Entropy
moment[3] 0.750 0.875 1.086
PCA | 0.750 0.875 0.764
SparsePCA | 0.875 1.000 0.624

UZ7>T, BIRDHF TV AV IuATY bk

—(FHOIZE D FHIFERZR6ITIRY, RENS,
v NEBUZED L BEINE. AT TV AN
DALY hOY—DETHREMEREZELZ6TI L
WNERTX 5, X512, Sparse PCAHEIRFRERILPCA
EERHELVEDLITMIBRVEREEZ R,

5.4 ERRDKMBEE SV N—T L — NEBGED
DEERH2
61z, BEIDOMETIMERAINGEN> =81
WMERRBE > U N—T L — MFER 2 RT,
F£NL, H6ITRUEMDF >V NN—=F L — T8
HiDNE=FHMEL . FBBEL HTTY 7R
VMO —&RDEEDTH D, TOFER, S
parsePCAHESREREL. PCABREREREL. E— AV MF
WEIX, top-1. top-2¢ LIZEVEEERL,
IEREITH B Z Do/, SparsePCAIXIFIE
0.8D b~y 72REEZER L. ZHIXRWERE
AILX NI, K8l SparsePCAIZ & % EfRHy 7
th‘aﬁ%i%f%é
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Table 1  Confusion Matrix of Classification Results using Sparse PCA Expansion Coefficients
Actual Predicted Class
Class 0 1 2 3 4 5 6 7 8 9 | Accuracy
0 379 0 0 0 0 0 0 0 133 0 0.752
1 0 512 0 0 0 0 0 0 0 0 1.000
2 0 21 467 0 0 0 0 24 0 0 0.912
3 0 32 0 451 0 0 0 29 0 0 0.881
4 0 0 0 0 512 0 0 0 0 0 1.000
5 0 0 0 0 0 471 0 0 0 41 0.920
6 0 0 0 0 20 0 492 0 0 0 0.961
7 0 22 0 0 0 0 490 0 0 0.957
8 0 0 0 0 23 0 0 0 489 0 0.955
9 0 0 0 0 0 5 0 0 0 507 0.990
0.932
Table 2 Discriminating Result for 79173” by PCA Table 5 Discriminating Result for 74685” by SparsePCA (a =
N 1.0)
P(wp) | 0.000 0.000 0.000 0.000 4] 6] 8] 5]
P(w1) | 0.000 1.000 0.000 0.000 P(wo) | 0.000 0.001 0.025 0.000
P(w2) | 0.000 0.000 0.000 0.000 P(w1) | 0.000 0.000 0.000 0.000
P(ws) | 0.0000.000 0.000  0.150 P(wz) | 0.000 0.000 0.000 0.000
P(ws) | 0.000 0.000 0.000 0.000 P(ws) | 0.000 0.000 0.000 0.000
P(ws) | 0.983 0.000 0.000 0.609 P(ws) | 0.979 0.000 0.001 0.000
P(ws) | 0.000 0.000 0.000 0.000 P(ws) | 0.000 0.000 0.000 1.000
P(wr) | 0.000 0.000 1.000 0.238 Plog) | 0018 1000 0000 0.000
P(ws) | 0.000 0.000 0.000 0.000 P(wr) | 0.000 0.000 0.000 0.000
P(wg) | 0.017 0.000 0.000 0.003 P(ws) | 0.003 0.000 0.975 0.000
P(wg) | 0.000 0.000 0.000 0.000
Table 3 Discriminating Result for 79173 by SparsePCA(a =
1.0) Table 6 Categorical Cross-Entropy of Results for
sgr 1 v g »9173, 74685
P(wo) | 0.000 0.000 0.000 0.000 Top-1 Top-2 Categorical
P(w1) | 0.000 1.000 0.000 0.000 Accuracy Accuracy Cross
P(w2) | 0.000 0.000 0.000 0.000 Entropy
P(ws) | 0.000 0.000 0.000 0.986 moment[3] | 0.750 0.875 1.086
P(ws4) | 0.000 0.000 0.000 0.000 PCA 0.750 0.875 0.764
P(ws) | 0.992 0.000 0.000 0.002 SparsePCA | 0.875 1.000 0.624
P(ws) | 0.000 0.000 0.000 0.000
P(w7) | 0.000 0.000 1.000 0.012
P(ws) | 0.000 0.000 0.000 0.000 aforementioned categorical cross-entropy ( Eq. (15))
P(wg) | 0.008 0.000 0.000 0.000

Table 4 Discriminating Result for 74685” by PCA
747 76" 787 75”7
P(wp) | 0.000 0.000 0.019 0.000
P(w1) | 0.000 0.000 0.000 0.000
P(w2) | 0.000 0.000 0.000 0.000
P(w3) | 0.000 0.000 0.000 0.000
P(ws4) | 0.965 0.000 0.000 0.000
P(ws) | 0.000 0.013 0.000 0.999
P(we) | 0.035 0.987 0.000 0.000
P(w7) | 0.000 0.000 0.000 0.000
P(wg) | 0.000 0.000 0.981 0.000
P(wg) | 0.000 0.000 0.000 0.001

sified ”9” as the second candidate with P(wg) = 0.380
and ”3” as the third candidate with P(ws) = 0.005.
However, all other digits were correctly classified as the
top-1 candidates.

It is important to note that even when digits are clas-
sified as the top-1 candidate, the value of P(w;) can vary
significantly. In cases where the value is low, the dif-
ference between the top-1 and top-2 candidates is often

small. Therefore, the evaluation results based on the
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are shown in Table 6. From Table 6, it can be observed
that the moment features based method® yielded the
worst results in terms of categorical cross-entropy. Fur-
thermore, the Sparse PCA expansion coefficients per-
formed slightly better than the PCA expansion coeffi-
cients.

5.4 Experiment#2 of Actual Low-Resolution

Number Plate Image Recognition

Fig. 6 shows new low-resolution numberplate digit
images which were not used in the study by Shinomiya
# . Table 7 shows the recognition accuracy and catego-
rial cross-entropy obtained by evaluating the classifica-
tion 18 digits on 5 numberplates shown in Fig. 6. The
results show that SparsePCA expansion coefficients,
PCA expansion coefficients, and the moment features
performed well in that order, both in terms of top-1
and top-2 accuracy. SparsePCA achieved a top-2 ac-
curacy of almost 0.8, which was considered as a good
result. Table 8 shows the specific recognition results by
SparsePCA.
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Table 7 EEEDF I N—F L — MEBIZN§ 5 EERGERL

Top-1 Top-2 Categorical
accuracy accuracy Cross
Entropy
moment 0.444 0.556 2.905
PCA 0.611 0.722 2.070
SparsePCA | 0.722 0.778 1.878

6. FEEMI Z)N— APCADRKITIZDOWT

EERE1 L $2 Tl RITEED A/N—APCA% FH
WRHBERE T, REBOELIIHT
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Table 8  FEEEDF U N—7 L — MNEZIZHT 2 EERERL
( Sparse PCA )
Plate Number 1st Candidate

2nd Candidate

384 3 3 ( 0.997 ) 9 ( 0.002)
8 & ( 0.966 ) 0 0.034)
4 1 (0975 ) 7(0.025)
741 7 1 ( 0.998 ) 7(0.002 )
4 4 ( 1.000)
1 1 ( 1.000 ) -
2631 2 2 ( 0.855 ) 3 (0.145 )
G 6 ( 1.000 ) -
3 3(0.812) 7(0.170 )
1 1( 1.000) -
4175 1 8 ( 0.901 ) 0 ( 0.009)
1 1 ( 1.000)
7 7 1.000)
5 5 ( 1.000 )
7302 7 { 0.990 ) 2 ( 0.008 )
3 (0,999 ) 7 ( 0.001)
0 T (0.559) 3(0.441)
2 2 ( 0.999 ) 3 ( 0.001)
1
0.8 - -
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Fig.6 Actual Numberplate Images

Table 7 Experimental Results #2 for Actual Number-

plate images

Top-1 Top-2 Categorical
accuracy accuracy Cross
Entropy
moment 0.444 0.556 2.905
PCA 0.611 0.722 2.070
SparsePCA | 0.722 0.778 1.878

6. Experiment#3 for dimension of Sparse
PCA

In Experiments #1 and #2, we have carried out
recognition experiments using Sparse PCA with a di-
mensionality of 8. To evaluate the robustness of Sparse
PCA to changes in dimensionality, we varied the dimen-
sionality of both Sparse PCA and PCA for a total of 26
images from Experiments #1 and #2, and investigated
the changes in recognition accuracy. Fig. 7 shows the
Top-1 recognition accuracy, and Fig. 8 shows the Top-2

recognition accuracy, as a function of the dimension-
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Table 8 Experimental Result #2 for Actual Number-
plate Images ( Sparse PCA )

Plate Number 1st Candidate 2nd Candidate
384 3 3 (0.997) 9 (0.002)
8 8 ( 0.966 ) 0 (0.034)
4 1(0.975) 7 (0.025)
741 7 1 (0.998) 7 ( 0.002 )
4 4 ( 1.000) -
1 1 ( 1.000 ) -
2631 2 2 (0.855) 3(0.145)
6 6 ( 1.000) -
3 3(0.812) 7 (0.170 )
1 1 ( 1.000 ) -
4175 4 8 (0.991) 0 ( 0.009)
1 1 ( 1.000 ) -
7 7 ( 1.000 ) -
5 5 ( 1.000) -
7302 7 3 (0.990) 2 ( 0.008)
3 3(0.999) 7 (0.001)
0 7 (0.559 ) 3(0.441)
2 2 (0.999) 3 (0.001)
1
0.8

0.6

0.4

Top-1 Accuracy

0.2
Top-1 Accucary ( SparsePCA) —+—
Top-1 Accuracy (PCA) -+
0 Top-1 Accuracy ( moment )
0 5 10 15 20
dimension

Fig.7 Top-1 accuracy for Sparse PCA dimension

ality of Sparse PCA and PCA. Fig. 7 and Fig. 8 indi-
cate that while the Top-1 recognition accuracy of Sparse
PCA fluctuates to some extent, the Top-2 recognition
accuracy exhibits relatively small fluctuations, suggest-
ing that Sparse PCA has a certain level of robustness to
changes in dimensionality. On the other hand, for PCA,
both Top-1 recognition accuracy and Top-2 recognition
accuracy decrease rapidly when the dimensionality ex-
ceeds 13, indicating that PCA is less robust to changes

in dimensionality compared to Sparse PCA.

7. Comparison of recognition results and
potential strategy

In Experiments #1 and #2, we compared the recog-
nition results using the Top-1 and Top-2 accuracy
as well as Categorical Cross Entropy to demonstrate
the effectiveness of the method using Sparse PCA. In
this section, to investigate the performance of different

methods in handling challenging cases, we present de-
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Table 9 4175 ”0) ”5 ’,wn:u\ngk%i%o)ttr

Plws) Plwr) Plwo)
moment 0.000 0.997 0.003

PCA 1.000 0.000 0.000
Sparse PCA 1.000 0,000 0.000
Table 10
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Table 9 Comparison of recognition results for ”75” in
“4175”
Pws) P(wz) P(wo)
moment 0.000 0.997 0.003
PCA 1.000 0.000 0.000
Sparse PCA 1.000 0.000 0.000
Table 10 Comparison of recognition results for ”73” in
“9173”
P(UJ3) P(UJ5) P(UJ7) P(UJQ)
moment 0.005 0.108 0.338 0.548
PCA 0.150 0.609 0.238 0.003
Sparse PCA 0.986 0.002 0.012 0.000
Table 11  Comparison of recognition results for 77”7 in
“7302”
P(wz2) P(ws) P(wr)
moment 0.000 0.000 1.000
PCA 0.000 0.333 0.667
SparsePCA 0.008 0.990 0.002

tailed comparison results in Tables 9, 10, and 11. Table
9 demonstrates a case where the moment-based method
exhibits high overconfidence. Table 10 presents a
case where the moment-based, PCA-based, and Sparse
PCA-based methods yield notably different results. Ta-
ble 11 demonstrates a case where Sparse PCA-method
exhibits the overconfident problem. However, since the
moment-based method and the PCA-based method can
correctly classify, it is considered that the overconfident
problem can be avoided by integrating multiple meth-
ods. Specifically, soft voting can be performed on the
outputs of multiple methods, or they can be integrated
Addition-

ally, as a completely different approach, integrating a

using an MLP ( Multi-Layer Perceptron ).
method using a DNN (Deep Neural Network) can also
be considered.

8. Conclusion

We propose a novel method for low-resolution num-

ber plate digit recognition based on Sparse Principal
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Component Analysis ( Sparse PCA ) coefficients and
Naive Bayes classification. The proposed method was
evaluated using actual low-resolution numberplate im-
ages and compared with two conventional methods:
moment features with Bayes classification and PCA
coefficients with naive Bayes classification. The eval-
uation metrics included top-1 accuracy, top-2 accu-
racy, and categorical cross-entropy. The results demon-
strated that the proposed method using SparsePCA co-
efficients and Naive Bayes classification outperformed
the conventional methods. However, the proposed
method still exhibited some misclassifications with high
confidence, which is known as the overconfident prob-
lem. Therefore, future research should focus on devel-
oping methods to avoid the overconfident problem, such

as integrating multiple classfication methods.
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