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Phased Data Augmentation for Training a Likelihood-
Based Generative Model with Limited Data

Yuta Mimura (mcmbcr)T

Abstract Generative models excel in creating realistic images, yet their dependency on extensive datasets for training
presents significant challenges, especially in domains where data collection is costly or challenging. Current data-efficient
methods largely focus on Generative Adversarial Network (GAN) architectures, leaving a gap in training other types of gen-
erative models. Our study introduces “phased data augmentation” as a novel technique that addresses this gap by optimizing
training in limited data scenarios without altering the inherent data distribution. By limiting the augmentation intensity
throughout the learning phases, our method enhances the model’s ability to learn from limited data, thus maintaining fidelity.
Applied to a model integrating PixelCNNs with Vector Quantized Variational AutoEncoder 2 (VQ-VAE-2), our approach
demonstrates superior performance in both quantitative and qualitative evaluations across diverse datasets. This represents

an important step forward in the efficient training of likelihood-based models, extending the usefulness of data augmentation

techniques beyond just GANs.
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1. Introduction

Generative models, renowned for their ability to gen-
erate compelling images, traditionally rely on large
datasets for optimal training. However, the challenge
of amassing substantial, domain-specific data remains
a significant barrier, especially given that “it is widely
known that data collection is an extremely expensive
process in many domains, e.g. medical images”?. Ad-
dressing this limitation forms the cornerstone of our
study, wherein we introduce a straightforward approach
for training generative models efficiently on limited
datasets.

In the broader landscape of deep learning, transfer
learning has emerged as a potent tool, particularly when
large datasets are unavailable. While transfer learning
can enhance performance in a target domain using data
from a related source task, “when transferring knowl-
edge from a less related source, it may inversely hurt the
target performance, a phenomenon known as negative

72, Concurrently, while data augmentation has

transfer
been embraced as a strategy to expand datasets artifi-
cially, it occasionally distorts the original data distribu-

tion. Furthermore, most existing data-efficient training
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methodsV®* primarily cater to the Generative Adver-
sarial Networks (GANSs) domain, leaving other genera-
tive models relatively unexplored.

Our proposed method, termed “phased data augmen-
tation”, provides the first step in this direction. It re-
duces the intensity of data augmentation in line with
the model’s learning phases. Initially, it amplifies the
dataset’s effective size, aiding the model in grasping the
general patterns. As training advances, the augmenta-
tion parameters are tightened to ensure the model fo-
cuses on salient features intrinsic to the original train-
ing data. This methodology, based on standard data
augmentation, is applicable to generative models other
than GANs.

This paper applies our method to a model that in-
tegrates Pixel CNNs with Vector Quantized Variational
AutoEncoder 2 (VQ-VAE-2), which we refer to as PC-
VQ2». PC-VQ2 is a likelihood-based generative model
without GANs’ architecture. PixelCNNs have promis-
ing potential to generate images that are both sharper
and more varied than many of their counterparts. Their
integration with VQ-VAE-2 can further enhance image
precision, a benefit derived from its hierarchical struc-
ture.

Empirical evidence from our experiments consistently
demonstrates the superiority of our approach over stan-
dard data augmentation technique in both quantitative

and qualitative assessments, underscoring its potential
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as an effective strategy for training a likelihood-based
model with limited datasets. The robustness of this ef-
ficacy, validated across various data domains and sam-
pled datasets, underscores the method’s consistent per-
formance improvements over the traditional data aug-
mentation, even in the context of limited data resources.

The remainder of this paper is organized as follows:
Section 2 situates PC-VQ2 within the broader land-
scape of generative models, elucidating the merits of
PC-VQ2, utilized in our experiments. In Section 3, we
provide an overview of the model under consideration in
this study. Section 4 delves into our proposed strategy
and its application to the aforementioned model. The
experimental results are detailed in Section 5. Section
6 discusses related works pertaining to data augmen-
tation. This section aims to furnish the reader with a
comprehensive background leading to the introduction
of phased data augmentation. Finally, Section 7 offers
a concise summary and conclusion of our findings and

contributions.

2. The Position of PC-VQ2 in Generative
Models

Given the expansive realm of generative models, our
focus in this paper is on the integration of PixelCNNs
with VQ-VAE-2%, underpinned by several compelling
attributes.

Pixel CNNs have the capability to generate a more di-
verse set of images compared to prominent generative
models, such as GANs®™. This capacity for diversity
is not exclusive to PixelCNNs but is also seen in other
likelihood-based models. A notable mention here is Dif-
fusion Models (DMs)®, which have recently witnessed
a rise in adoption and share this advantageous trait.

What sets Pixel CNNs apart, however, is their unique
capacity to produce images that are not only diverse
but also sharper compared to other likelihood-based
models, including DMs. This edge is ascribed to Pixel-
CNN'’s pixel-wise learning approach, in stark contrast
to the more common image-wise learning seen in other
likelihood-based models. When producing high-fidelity
images, this distinction is particularly significant.

The integration of VQ-VAE-2 further enhances the
sharpness, due to its hierarchical structure and discrete
latent spaces. The encoding within these spaces sig-
nificantly improves the computational efficiency, when
Pixel CNN models generate pixels for each image in an

autoregressive manner.
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3. Overview of the PixelCNNs and VQ-
VAE-2 Utilized in PC-VQ2

This section provides a comprehensive overview of
PixelCNNs and VQ-VAE-2 as utilized in the PC-VQ2
framework.

VQ-VAE-2 is an AutoEncoder with vector-quantized
latent spaces, comprising an encoder F() and decoder
D().

mapped to their nearest quantized ones e:

When encoding continuous vectors, these are

Quantize( E(x)) =ej, where k=argmin || E(x)—e;||(1)
j

®). In the original VQ-VAE paper?, the posterior cate-
gorical distribution was considered deterministic, lead-
ing to a consistent KL divergence regularization term
through a simple uniform prior over z = k. The model
is trained to both maximize the likelihood and tune the
matching for quantization. The loss function is as fol-

lows:

L(x,D(e)) = |lx—D(e)|l3+lsg[E(x)]—ell3

+6][sgle] - E(x)|13 (2)

®. Here, sg denotes the “stop gradient” operation.
The last term encourages the encoder’s output to grav-
itate toward the selected quantized vector. Addition-
ally, VQ-VAE-2 utilizes a hierarchical structure with
two different sizes of quantized latent spaces: the larger
“bottom-level” latent map receives the encoded contin-
uous vectors and the discretized output of the smaller
“top-level” latent map.

PixelCNNs model the joint distribution of pixels in
an image x as the subsequent product of conditional
distributions, where x; denotes an individual pixel:

n

Hp(xi\xl, ce L)

i=1

(3)

p(x) =
19, The pixel sequence adheres to raster scan ordering.
The dependencies are modeled using masked convolu-
tion filters, offering a training efficiency advantage over
RNN structures. The training objective is to maximize
the likelihood, with the loss function being a reconstruc-
tion loss typified by cross-entropy.

As depicted in Fig. 1, the PC-VQ2 architecture as-
signs global image information to the top-level, whereas
the bottom-level focuses on local details. For sampling
images, PixelCNNs are employed over the latent maps,
as illustrated in Fig. A.1 of Appendix A, which provides
an overview of the PC-VQ2 sampling process.

For each latent map, we chose specific PixelCNN
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Fig. 1

Overview of a PC-VQ2 training structure and application of phased augmentation to it.

The

upper figure illustrates the training of VQ-VAE-2, and the lower figure illustrates the individual

training of PixelCNNs.

models that have features mentioned in the VQ-VAE-
2 paper. The bottom-level utilizes a conditional Gated
Pixel CNN*® featuring gated activation units and condi-
tioning with the top-level. In contrast, the top-level em-
ploys PixelSNAIL'Y, which integrates attention layers
while inheriting the gated activation units. We imple-
mented the VQ-VAE-2 encoder-decoder model, the con-
ditional Gated PixelCNN model, and the PixelSNAIL
model on the basis of the original papers®!”*") and
open-source implementations.

Training proceeds initially with VQ-VAE-2, followed
by individual training for the top-level PixelSNAIL and
the bottom-level Gated Pixel CNN.

4. Phased Data Augmentation

In this section, we introduce our proposed method,
termed “phased data augmentation”, and further ex-
plain its applications within PC-VQ2.

4.1 Overfitting in Generative Models

Generative models often necessitate extensive train-
ing datasets, commonly spanning tens of thousands of
When these

models have access only to a limited dataset, overfit-

images, to ensure optimal performance.
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ting becomes a significant concern.

For instance, when GANs are trained on a con-
strained dataset using standard or no augmentation,
they typically struggle to produce high-quality images
1)3)4)

A similar issue arises with the PC-VQ2 model. When
PC-VQ2 is trained with limited data and no data aug-
mentation, it predominantly generates images that re-
semble noise. Even with the incorporation of standard
data augmentation techniques, the PC-VQ2 often pro-
duces images that appear unnaturally distorted. Al-
though standard data augmentation can mitigate over-
fitting to some extent and enhance the overall quality
of the generated images, the output still often appears
unnatural. A detailed comparison of these phenomena
is provided in the “Results and Discussions” Section,
specifically in Fig.4 and 5.

4.2 Methodology of Phased Data Augmenta-

tion

To address the issue, we introduce a novel yet
straightforward training strategy, termed “phased data
augmentation”. The fundamental principle of this ap-

proach is described as follows:
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Fig.2 Graphical representation of phased data augmentation.

(1) Begin with the full range of label-preserving
standard data augmentations on a limited
dataset.

(2) As training progresses, restrict these ranges in
phases.

(3) Shift from standard augmentation to minimal
augmentation that maintains a target distribu-
tion of the training set.

Figure 2 provides a graphical representation of this
strategy.

Because our phased data augmentation builds upon
the standard data augmentation technique, it does not
require GANSs’ structures, offering an approach that is
applicable across a wide range of model architectures
beyond just GANSs, by introducing our phased data aug-
mentation as a replacement for standard data augmen-
tation technique.

In this paper, we used basic transformations such as
flipping, rotation, zooming that consisted of anisotropic
random integer upscaling and constant range cropping,
and color-space transformations such as brightness, sat-
uration, and contrast manipulation. Flipping was con-
sistently used throughout all phases because it tends
to maintain a target training set distribution. The re-
maining three transformations, rotation, zooming, and
color-space transformations, were gradually limited in
phases in the order mentioned, to bring the dataset dis-
tribution incrementally close to its original state. We
determined the sequence of imposing limitations on the
operations by considering their impact on altering the
distribution of the original training data. Specifically,
because rotation, zooming, and color-space transfor-
mations progressively exert a stronger influence on the
data’s distribution, we imposed limitations in this spe-
cific order.

A distinct point of this strategy over transfer learning
is its capacity to train on a dataset with a distribution
that mirrors the original. This can be seen as an ad-
vantage.

As highlighted earlier, during the initial training
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stages, data augmentation enables a model to grasp
the overarching patterns shared by augmented train-
ing data from scratch. As training advances and aug-
mentation is reduced, the model becomes finely attuned
to the distinct attributes of the original dataset. This
observation is supported by Fig. 3, showcasing images
generated at each phase in a PC-VQ2 training.

4.3 Application of Phased Augmentation to

PC-vVQ2

In this section, we delineate the specific setup of
phased data augmentation applied to the PC-VQ2
model, based on the methodology described earlier. Al-
though certain decisions were made based on empirical
observations, they were, as much as possible, carefully
grounded in reasoned judgment. Importantly, in our ex-
periments, the identical setup was applied across mul-
tiple data domains and sample datasets, demonstrating
clear and consistent superiority over standard data aug-
mentation approach. Detailed analyses of these experi-
mental outcomes are further elaborated in the “Results
and Discussion” section.

During the initial phase, the following augmentations
were applied:

e Flipping

e Rotation, allowing for a maximum range of +180
degrees

e Zooming

e Color-space transformations with a parameter
value of 0.30.

As the training progressed through subsequent
phases:

e In the second phase, the rotation’s maximum de-
gree was restricted to +18.

e In the third phase, no rotation was allowed.

e The fourth phase excluded the zooming operation.

e During the fifth phase, the color transformation
parameter was set to 0.15.

e In the final phase, no color transformation was ap-
plied.

Regarding the initial settings, the decision to start
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Iteration| 1,000 | 10,000 | 20,000 40,000 | 45,000 | 50,000
Change rot 18 no zoom| col 0.15 | col 0.0
Fig.3 Images reconstructed in each phase through a bottom-level PixelCNN training. Each element in

the ‘Change’ row indicates the specific limitation imposed relative to the previous phase, with

more detailed explanations provided in Section 4.3.

with rotations up to 360 degrees aimed to maximize
the benefits of data augmentation. For zooming and
color transformations, we exercised caution to avoid ex-
treme transformations that could significantly deviate
the data from its original distribution, such as overly
zoomed-in images where only a part of the subject is
visible or overly brightened images where the subject
becomes indiscernible.

Concerning rotation, we implemented it in two stages
to suppress the impact on the augmented training
data’s distribution, initially limiting the rotation in the
second phase to one-tenth of the full range, because per-
forming the rotation in one go could significantly alter
the training data distribution. As for color transfor-
mations, considering the diminished effect of augmen-
tation on limited data in the last phases, we opted for
a two-phase approach to encourage learning by retain-
ing learned content while removing excess color trans-
formed information. Considering that reducing the aug-
mentation effect to one-tenth would be excessively re-
strictive, we chose to reduce it to one-half instead. To
prevent the introduction of margins due to the rotation
and zooming operations, constant integer upscaling was
utilized. In the rotation process, after upscaling, a con-
sistent center cropping was used to maintain the orig-
inal resolution. Specifically, the zooming process em-
ployed anisotropic random integer upscaling, wherein
the height and width are independently scaled by a fac-
tor ranging between 1.05 and 1.30. After upscaling,
cropping was performed to keep the image within the
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minimum upscaled pixel region.

In terms of phase progression, each phase transi-
tioned after 10,000 iterations, with the exception of the
transition from the fifth to the last phase and the con-
clusion of the final phase, both taking place after 5,000
iterations, considering the diminished effect of augmen-
tation on limited data in the last phases.

All the random values were sampled from uniform
distributions.

The codes were implemented using Tensorflow 2.10.1
and OpenCV 4.8.0.

The phased augmentation approach is utilized on the
limited training dataset when training the top-level and
bottom-level Pixel CNNs models, depicted in Fig. 1. For
VQ-VAE-2 training, the standard augmentation tech-
nique is utilized, given that the augmented dataset gets
leveraged during the training of the Pixel CNNs models.
VQ-VAE-2 is trained separately for each data domain
and sampled dataset. In the comparative experiments,
to ensure a fair comparison, the same VQ-VAE-2 is used
when only the technique changes, and only the PixelC-
NNs part is retrained. However, when the data domain
changes, both Pixel CNNs and VQ-VAE-2 are retrained.

5. Results and Discussions

This section represents the experimental results com-
paring phased data augmentation to the other data-
efficient technique when training PC-VQ2 with limited
data.

For the experiments involving PC-VQ2, standard
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Table 1

FID results over trained PC-VQ2 models.

Method FFHQ 0-99 | 10,000-10,099 | 20,000-20,099 | AFHQ v2 Cat
Standard data augmentation 263.21 240.66 252.87 259.24
Phased data augmentation 169.62 140.46 149.63 177.33

With standard data augmentation

With phased data augmentation

10,000-10,099|| «

= 1
FFHQ sy -
0-99
FFHQ

» - = - -
L v~

cat

FFHQ e = faw
20,000-20,099 ) s L 3
AFHQV2 A P \

Fig.4 Generated human-face and cat-face images by the trained PC-VQ2 models.

T

data augmentation technique was adopted for the com-
parison. This decision was based on the observation
that using no data augmentation, the PC-VQ2 gener-
ated images of negligible quality, resembling noise.

The FID score was employed to measure perfor-
mance, utilizing 5,000 generated images and 100 real
images, as used in a prior paper on data-efficient GANs
%, We utilized the first eight sampled images for figures
of the generated images. Details on our experimental
settings, can be found in Appendices B.

We utilized the FFHQ dataset, which is the high-
quality human-face dataset'?, and the AFHQ v2 cat
dataset, which is the high-quality cat-face dataset
19719 during the training. Three distinct subsets were
drawn from the FFHQ dataset, specifically indices 0-99,
10,000-10,099, and 20,000-20,099. For the AFHQ v2 cat
dataset, a set of 100 images was selected at random.

As summarized in Table 1, across all training
datasets, phased augmentation demonstrated signifi-
cantly better FID scores compared to standard augmen-
tation technique. The scores for each method were clus-
tered around similar values. This observation, coupled
with the consistent and clear superiority of the proposed
method over standard data augmentation across various
data domains and sampled datasets, underscores the ro-
bustness of its efficacy, even in contexts of limited data
resources. The phased data augmentation technique
consistently outperforms the standard data augmenta-
tion method across all evaluated datasets, showing a
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Generated images by the trained PC-VQ2 model with no data augmentation.

significant reduction in FID scores ranging from 81.91
to 103.24 points.
ficacy of phased data augmentation in improving the
quality of the trained PC-VQ2 models.

Figure 4 showcases the generated images, corrobo-

This demonstrates the superior ef-

rating the quantitative findings. For instance, when
examining the second column from the left, the images
generated using the standard method exhibit multiple
facial parts that are not unified in one direction, re-
sulting in distorted and unnatural images. In contrast,
the phased method produces images with well-aligned
facial features, leading to a more natural and recogniz-
able face. Figure 5 illustrates that the generated images
during training with no augmentation resemble noise.

One of

the factors is the employment of low-resolution latent

The generated images exhibit some blur.

spaces, 16-8. In fact, leveraging higher-resolution la-
tent spaces, 32-16, results in sharper images, albeit with
some distortion, as illustrated in Fig. A.2. However,
even this resolution remains below the original study’s
configuration. Other factors contributing to the blurri-
ness include a smaller codebook size of 256 compared to
the original 512, and the use of a smaller latent space
configuration compared to the original FFHQ experi-
ments, which utilized higher resolutions of 1024 x 1024
with three latent spaces (128-64-32). These modifica-
tions were made to enhance cost-effectiveness but likely
led to the observed blurriness. The images generated

under the larger latent space configuration, 32-16, in
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Fig. A.2, demonstrate the model’s potential to gener-

ate sharpened images.
6. Related Works

This section explores the intricate domain of data
augmentation, discussing its various aspects and
how it intertwines with other data-efficient strate-
gies. Furthermore, we clarify the connection between
augmentation-based data-efficient methods in gener-
ative models, distinctly contrasting them with the
method proposed in our research.

6.1 Data Augmentation in Data-Efficient Al-

gorithms

This subsection delineates the role of data augmen-
tation within the sphere of data-efficient algorithms. It
further discusses various concepts and methods perti-
nent to data augmentation, highlighting the distinc-
tions between phased data augmentation and its coun-
terparts.

Data-efficient algorithms have emerged as a signif-
icant boon for Deep Learning models, particularly in
scenarios constrained by limited data. A comprehensive
survey by'® classifies these algorithms into distinct cat-
egories: non-supervised paradigms, data augmentation,
knowledge sharing, and hybrid systems. Knowledge
sharing includes several strategies. These encompass
transfer learning, multi-task learning, lifelong learning,
and meta-learning. Our research prioritizes data aug-
mentation. This approach is proficient in augmenting
images while preserving their labels, often beneficial
even when data is scarce within a specific domain.

An extensive review of image data augmentation
The methods are di-
verse, including kernel filters, geometric transforma-
Our

study concentrates on geometric transformations and

techniques is presented in'™.

tions, color space transformations, and more.

color space transformations, primarily because these
methods maintain the original labels of the data. When
the objective is to augment the volume of images within
a targeted domain, kernel filters might not be the opti-
mal choice. They are conventionally employed for image
enhancement, implying their use should be confined to
preprocessing stages where only enhanced images are
utilized.

We proceed by contrasting various data augmenta-
tion strategies with the phased data augmentation in-
troduced in this paper.'® notes that models pre-trained
on augmented data and subsequently fine-tuned with

original data can learn beneficial information. How-
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ever, our proposed method distinguishes itself by alter-
ing training data distributions in stages, rather than
in a single instance. Through the gradual limitation
or elimination of specific transformations (e.g., rota-
tion), the augmented data distribution incrementally
aligns more closely with the original. Therefore, phased
data augmentation can enable models to learn the orig-
inal distribution more effectively. Additionally, this ap-
proach can enhance the extraction of transformation-
related information.

In the context of managing data augmentation pa-
rameters, one might consider automated control anal-
ogous to AutoAugment'®. Yet, our method adopts a
phased reduction in parameter ranges, acknowledging
that automated control typically necessitates additional
computational resources and data — specifically, it de-
mands loss function computation based on validation
data.

6.2 Data Augmentation in Generative Mod-

els

This subsection discusses traditional data-efficient
methods rooted in data augmentation within the scope
of generative models, providing a comparative analysis
with the method proposed in our study.

In the sphere of data-efficient learning, particularly
learning with constrained datasets, research focusing on
generative models has recently been performed. Several
studies on GANs"®* have independently advocated for
the incorporation of data augmentation into the inputs
of the discriminator, not only during the optimization
of the generator but also throughout the discriminator’s
optimization process. This strategy aims to preempt
any undesirable shifts in the synthesis distribution and
has proven effective for GANs. However, it is not ap-
plicable to generative models without a discriminator.
For instance, Pixel CNNs cannot use this technique.

Another innovative approach detailed in® suggests
the implementation of data augmentation under a spe-
cific probability, coupled with the aforementioned strat-
egy. This technique is further refined by adaptively
modulating this probability through a function calcu-
lated based on the unique architecture of GANSs, rein-
forcing its specificity to GANs. Contrary to these meth-
ods, our research opts to constrict the data augmen-
tation parameters within certain phases, shunning the
use of a gradually diminishing probability. This choice
stems from the understanding that even a minimal yet
non-zero probability could encompass data subjected to

the full spectrum of transformation parameters.
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A paper on generative models®” has proposed using
data augmentation and conditioning a model with the
data augmentation parameters. However, the study
only experimented with a limited array of data aug-
mentation types, for instance, 90-degree rotations, and
relied on a more substantial dataset without augmen-
tation compared to the limited data discussed in our
paper. The task of training a generative model with a
mere 100 images necessitates a more diverse set of data

augmentation techniques.
7. Conclusions

Within the existing landscape of data-efficient train-
ing methods, which predominantly cater to GAN ar-
chitectures, this study represents a pioneering step to-
wards exploring data-efficient training for alternative
generative models. We have introduced a novel training
strategy named “phased data augmentation,” tailored
specifically for a likelihood-based generative model op-
erating with limited datasets. Our experimental find-
ings consistently demonstrate the efficacy of phased
data augmentation, showcasing its evident superior-
ity over the traditional augmentation approach. This
was validated across various data domains and sampled
datasets, indicating consistent performance improve-
ments and robustness for the PC-VQ2 model, even in
contexts with limited data resources. Regarding fair-
ness, it is important to note that the optimal param-
eters for phased and standard augmentations can vary
depending on the dataset. By selecting multiple data
conditions and applying fixed parameter sets for each
method, we ensure that neither method is unfairly ad-
vantaged or disadvantaged. This approach allows for
a balanced and fair evaluation of both augmentation
methods.

While our proposed method demonstrates sufficient
effectiveness compared to existing robust techniques un-
der varying data conditions, it is generally true that the
optimal parameters can differ for each dataset. There-
fore, further tuning based on our proposed method
could potentially yield even better results.

While our experiments do not explicitly identify
which aspects of the phased data augmentation process
contribute most significantly to performance improve-
ments, investigating these components further could
provide valuable insights. Such investigations are par-
ticularly important when working with large datasets,

as identifying the most effective parameters on smaller
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datasets can help reduce computational costs. However,
this focus deviates slightly from the main objective of
our paper, which is to demonstrate the overall efficacy
of the phased augmentation process.

Drawing from the principles of traditional data aug-
mentation, our methodology promises broad applicabil-
ity to a diverse array of generative models and trans-
fer learning contexts, mirroring the wide-ranging util-
ity of traditional augmentation techniques. While the-
oretically sound, the practical effectiveness of this ap-
proach for other likelihood-based models warrants fur-
It is our hope that this

research not only advances the capabilities of the PC-

ther empirical investigation.

VQ2 but also invigorates further study and application
of likelihood-based models, facilitating their effective

learning from limited data.
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Appendix

A. Overview of a PC-VQ2 Generation Struc-

ture

This section overviews a PC-VQ2 generation. Fig-
ure A.1 illustrates the structural layout of the PC-VQ2
generation process.

In each of the discrete latent maps for both the top-
level and bottom-level, the value of the top-left pixel
represents a discrete vector index, which is randomly
sampled from a uniform distribution. Subsequent pix-
els in each map are sampled based on the respective
trained PC-VQ models, following a raster scanning pat-
tern. During the generation process at the bottom-
level, the discrete latent maps generated at the top-level
are utilized for conditioning, along with the randomly
sampled value of the top-left pixel.

B. Details of the Experimental Settings

This section details the experiment setups regarding
the hyperparameters of PC-VQ2 model and its training.
We implemented FID metrics to evaluate in PC-VQ2,
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based on the official PyTorch code of StyleGANS.

We implemented VQ-VAE-2 encoder-decoder, recon-
struction, and generation modules on the basis of Deep-
Mind’s sonnet library. Additionally, we implemented
VectorQuantizerEMA of VQ-VAE-2, PixelSNAIL, and
GatedPixel CNN, based on Sarus’s implementation from
tf2-published-models.

For the VQ-VAE-2 hyperparameters, we set the code-
book size to 256, representing the number of discrete
vectors, and the codebook dimension to 64, indicating
the dimension of each vector. For the Pixel CNNs mod-
els, we used a dropout rate of 0.2.

Next, we detail the pieces of training. Our training
datasets consisted of images with a resolution of 256 x
256.

Regarding VQ-VAE-2 training, we used Adam opti-
mizer with a learning rate of 0.0003, a batch size of 32,
and a total of 4,000 training iterations.

Regarding the Pixel CNNs training, basically, we used
Adam optimizer with a learning rate of 0.0003, a batch
size of 32, and a total of 50,000 training iterations.
Considering that phased data augmentation is akin to
transfer learning, the optimizer was reset at each phase
transition, and the learning rate was adjusted in subse-
quent phases, decreased by factors of 10, 40, 100, 500,
and 1,000 respectively. These factors were empirically
determined through trial and error.

To ensure a fair comparison, both the standard data
augmentation and the no augmentation experiments
employed the same settings. For standard data aug-
mentation, we changed the parameters of color opera-
tions to 0.15.
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Overview of a PC-VQ2 generation structure.

For a further equitable comparison in the no data
augmentation training and when using real images for
FID calculations, we employed constant upscaling, mir-
roring the approach used in phased data augmentation.

B.1 Key Modifications to the VQ-VAE-2 En-

coder Decoder Implemented Model

We made the following modifications to the original
implementations:

e Converted the original Sonnet implementation of
the encoder, decoder, and residual stack to TensorFlow
Keras layers.

e To encode images from a resolution of 256x256 to
16x16, we extended the Encoder class by adding addi-
tional convolutional layers to create a deeper architec-
ture.

e Added Encoder_Top and Decoder_Top classes to
handle the hierarchical encoding and decoding process.

e Introduced classes for modularizing the hierarchi-
cal VQ-VAE architecture.

e Enhanced the VQVAE class to integrate the hier-
archical encoding and decoding process, along with the
top-level and bottom-level layers.

B.2 Key Modifications to the PixelCNN Im-

plemented Models

The following key modifications were made to en-
hance performance and adapt the models for our spe-
cific use case, reflecting contents and enhancements de-
scribed in the original VQ-VAE-2 paper®:

o Residual Enhancements: Added a new class to

This
change is based on the original VQ-VAE-2 paper, which

improve the residual connections in the model.

discusses the use of deep residual networks consisting of
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32-16, and phased augmentation.

1 x 1 convolutions to improve model likelihood without
significantly impacting training time or memory usage.

e CausalAttentionBlock: Integrated a dropout layer
within the CausalAttentionBlock to prevent overfitting
by randomly dropping units during training.

e PixelSNAIL and GatedPixelCNN Models: Modi-
fied both models to include additional residual blocks
and an initial convolution layer to process the input be-
fore passing it through the main network. Both models
receive discrete vectors from VQ-VAE-2 as input, one-
hot encode them, and process them through the initial
convolutional layer to adjust the representation for sub-
sequent layers. Included the additional residual blocks
to further improve the models’ depth and capacity.

e GatedPixel CNN Model:

context processing from Dense layers to Conv2D layers

Specifically, converted

and added upsampling and convolutional layers for hi-
erarchical context conditioning to better handle spatial
information, based on the conditional GatedPixelCNN
paper'®

improve generalization.

. Integrated dropout layers within the model to
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