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Deep Learning-based RGBA Image Compression with
Masked Window-based Attention

Abstract

Yoshiki Inazu®and Hideaki Kimata’

RGBA image that includes an alpha channel for transparency is common in real-world

applications. Traditional RGBA compression methods apply the same methods to both RGB and alpha channel,

but potentially leading to suboptimal results due to their different characteristics. This paper proposes a deep

neural network that introduces attention modules individually suitable for RGB signals and alpha channel. The

proposed method consists of two networks, one for the RGB signal and one for the alpha channel, with an

appropriate attention module applied in each. In particular, a new attention module that focuses on the

unmasked regions of the alpha channel is applied. In the evaluation, the proposed method is compared with a

simple deep neural network with input and output layers extended from three to four channels and classical

RGBA image compression methods.

Keywords: image compression, deep learning, alpha channel, RGBA, masked window-based attention.

1. Introduction

Images are used in a variety of applications, and
image compression is a fundamental technology, and a
large amount of research for improving the performance
is ongoing. In recent years, deep learning-based image
compression has been studied. Ballé et al. have studied
the variational autoencoder type CNN-based method ™!
and Zou et al. have researched the transformer-based
method 2, which include Swin Transformer 3. Moreover,
Liu et al. have studied the network I combining CNN
and Swin Transformer. These studies have shown image
compression performance that outperforms classical
methods not using deep learning. However, the scope of
these studies is limited to RGB images.

While there are many studies of such RGB signals,
efficient compression coding of RGBA images, which
include alpha channels for transparency is needed
because they are commonly used in practical applications
such as image editing. The examples of the classical
compression methods of RGBA images are PNG P! with
lossless compression and BPG (¢! that uses an intraframe
of HEVC video encoding 7. In these methods, the alpha
channel is compressed as a single-channel color signal by

directly applying the compression method for RGB
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signals. However, since the characteristics of the signal
are different between the alpha channel and RGB color
signals, high compression performance may not be
achieved by classical compression methods. For example,
according to our calculations, in the RGBA image
dataset with an alpha channel manually added to the
Kodak dataset used in the general image compression
used in Section 4 of this paper, the autocorrelation
coefficient is found to be about 0.886 for the RGB
channel and about 0.973 for the alpha channel. In
addition, the evaluation dataset P3M-500-NP, which
comes with the RGBA image dataset P3M-10k, focusing
on human images, resulted in an average of about 0.956
for the RGB channel and about 0.995 for the alpha
channel. Note that the autocorrelation coefficient is
measured by shifting 1 pixel in the x and y directions.
The reason why the difference in the autocorrelation
coefficients of PSM-10k is smaller than that of the Kodak
dataset is that P3M-10k focuses on photographs of
people, which often feature smooth color transitions,
such as those in skin and clothing. These observations
suggest that alpha channel signals exhibit greater
similarity than RGB signals. These facts mean that the
alpha channel signals have more similarity than the
RGB signals. Therefore, we study a learning-based
approach to improve the overall compression efficiency
by optimizing the whole network consisted of sub-
networks for RGB signals and alpha channel. Each sub-

network learns the features of each signal. In addition,
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the network for RGB signals learns by incorporating the
information of the alpha channel.

This work extends our previous work on learning-
based RGBA image compression 8. In our previous work,
we used a 3-channel input encoder for RGB signals and a
The

corresponding decoders were designed to reconstruct

l-channel input alpha channel encoder.
RGB and alpha images, respectively. Information on the
alpha channel was added to the loss function when
learning the RGB signal. Compression efficiency was not
sufficient in the previous study. In this study, we propose
a novel attention module to improve the performance of
the RGB and alpha channel encoders and decoders.
Specifically, we introduce the attentions of the unmasked
regions from the alpha channel for the network of RGB
signals, and the simplified attention module for the
network of the alpha channel.

In this paper, we demonstrate the proposed method
outperforms existing classical methods that support
RGBA, such as BPG 6l and AVIF 91 in addition to a 4-
channel network supporting RGBA signals which simply
extends compression network of RGB signals. We also
evaluate the dependence of the alpha channel on the
training dataset and show that using the COCO dataset,
which is commonly used in semantic segmentation
tasks, and the P3M-10k dataset, which is used in image
matting tasks, significantly improves the compression
performance of the alpha channel.

The contributions of this paper are as follows:

1. We propose a new attention module using alpha

channel for the network to process RGB signals.

2. We demonstrate the performance advantage of the
proposed method by comparison with a network that
processes with 4 channels and other classical methods.

3. We also show the further improvement by using

appropriate training dataset for alpha channel.

2. Related Work

2.1 RGB image compression using deep learning

In general, deep learning-based image compression [10. 111
uses a VAE-type network and four transformation
modules. Encoder g.(x; @,) takes the original image x as
input image and transforms it into a latent feature
variable y using multiple convolutional layers and
nonlinear functions. Hyper encoder A.(y; @) converts from
latent feature variable y to latent representation z. Next,
hyperdecoder h4(Z; 6,) is used to estimate the parameters
of the entropy model pyp(¥ |2) from the quantized latent

representation z = Q(z). Finally, decode the reconstructed
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image X from the quantized latent feature variable ¥ =
Q(y) using decoder g4(; 6;). Note that @, &, 6, and 6; are
optimization parameters for each module. In addition to
these methods, we use channel-wise entropy model
proposed by Minnen et al. 12, In the entropy model,
instead of [y], each [y - ] is rounded and encoded using
an arithmetic coder, and [y - p] + 1, modeled as a single
Gaussian distribution with variance o, is decoded as ¥
and sent to the decoder g.(¥; 6,). Moreover, this entropy
model improves coding efficiency by dividing y into s
slices {yo, ¥1, ..., ¥s-1}. For z, there is no prior distribution,
so the factorized density model ¥ is used to encode it as

in Equation (1).
Py (@ W) = 1_[ (Pz-hp(lp) *U (—ll)> (z)
J\Y 2°2

In Equation (1), z;j represents the j-th element of z,
where j specifies the location of each element or each
signal. Z is respectively decoded using dedicated A to
obtain two latent features p' and ¢. These are used as

inputs to each of the following slice networks SN;.
T Wi, 0p = SN (W, 0", <y, ¥i) 2

3

These processes can be assumed to be pyp(¥ [2)~N(z, 062).

37<i = {}_]0'371' "'ﬁ}_]i—Z'yi—l}

The output result r; of the latent residual prediction is
used to reduce the quantization error (y—¥) introduced by
quantization. This value of r; is used in Equation (4) to
obtain y;.
Vyi=ri+9 (4)

The output result y is the input to the decoder g.(¥; 6,).
The loss function in the image compression method

using deep learning is defined by the following equation.
L=H)+H(@) +2-D(x,2) = E[-log, (ps512))| +
E[~loga(psyy (21 W))] +2-D(x, %)

In Equation (5), H#) and H(%z) are the amount of bit per

pixel, D is distortion which is the error between the

(%)

input image x and the reconstructed image %. 1 is a
hyperparameter to manipulate the RD trade-off.

There is the ROI (Region of Interest) image compression
method which used CNN, presented by Akutsu et al. 13,
The ROI image encoding method aims to achieve
efficient compression enhancing image quality of
particular image region. In the ROI based compression,
mask data was introduced to encoder network to
indicate the area, and additionally the compression

scheme of such mask together with RGB signals by a
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four-channel encoder was proposed, although it did not
output mask data. In this paper, the aim of our study is
to efficiently encode an image with an alpha channel,
and we propose a method to learn and encode them
separately, based on the different characteristics of the
alpha channel.

2.2 Attention module

In RGB image compression using deep learning, many
studies introduce attention modules. By introducing
attention modules, more bits can be allocated to visually
important areas and fewer bits can be allocated
elsewhere. As a result, visual quality is improved. For
example, Chen et al. ['4 applied nonlocal attention to
create importance maps. Cheng et al. 15 introduced a
Simplified attention module that removes blocks of
nonlocal attention to achieve faster processing, as shown
in Figure 1.

The Simplified attention module consists of three
branches that generate feature maps, create attention
masks and residual connections. The main branch
generates feature maps using three Residual Blocks
consisting of three convolutional layers. The mask
branch creates an attention mask using three different
Residual Blocks, one 1 x 1 convolutional layer, and a
nonlinear sigmoid activation function. The created
attention mask is multiplied element by element with
the output from the main branch. Finally, the final
output is created through a residual connection to the
input data.

Zou et al. 2l proposed a window-based attention
method, inspired by the Swin Transformer Bl. This
approach divides the input into MxM non-overlapping
local windows, within which self-attention is computed
separately for each window.

The basic structure is the same as SW-MSA (multi-

Residual Block (RB)

Conv1x1,N/2

Conv3x3,N/2

Fig. 1 Simplified attention module.
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Residual Block (RB)

]
Window-based
attention

Conv1x1,N/2

(e ]
[ |
s |

Fig. 2 Window-based attention module.

head self-attention using shifted window partitioning
configurations) in Swin Transformer 3!, and the
equations are shown in Equation 6, where @ = xWg, K =
xWg, V =xWy are obtained by linear transformation of
the input image. where Wo, Wk, Wy are weight matrices
shared among different windows and x is the input
image divided into local windows. Generally, @, K, V
have dimensions R¥**d where d is the number of
dimensions of queries and keys. Finally, the attention

matrix is computed using the following equation.

Attention(Q,K,V) = softmax (QTI;T + B) %4 (6)
where B is the learnable relative position bias. This
window-based attention is incorporated into the network
using the window-based attention module shown in
Figure 2.

The basic structure of the Window-based attention
module is the same as that of the Simplified attention
module 151, The differences are the introduction of
Window-based attention and the content of the Residual
block. In this module, Window-based attention is
introduced at the beginning of the branch where the
attention mask is created (red frame in Figure 2). Unlike
the Simplified attention module, the Residual block in
this module uses GELU for the activation function. This
activation function is also used before the final output of
the Residual block.

2.3 RGBA image compression using deep

learning

To the best of our knowledge, our previous work is the
only study that applies deep learning to RGBA image
compression. In our previous study ¥, the RGBA input
image was separated into RGB and alpha channels, and
each channel were input to a dedicated network. Finally,

the output channels from each network are combined
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and merged into a single RGBA image. The network
architecture of each channel is based on CNN and
similar to the method of Zou et al 12/, and only for RGB
signals Window-based attention module is added to it.
Our previous work has shown that methods using
learned convolutional networks are also effective for
RGBA images. In this paper, we propose a network with
a mask applied to the Window-based attention module
for RGB signals and a network with another attention
applied to the alpha channel to improve performance

over the previous work.

3. Proposed Method

3.1 Masked window-based attention module

The window-based attention module proposed by Zou
et al @ for RGB images is not always optimized for the
RGBA format. Therefore, we propose a masked window-
based attention module. The masked window-based
attention module refers to the input and output alpha
images of the alpha network during window
partitioning, as shown in Figure 3, and if all pixel values
in an alpha channel window are zero, the feature map
window at the same location is excluded from the
attention calculation. After calculation of the attention,
the partitioned window feature map is repositioned to its
original position while referring to the alpha image.
Note that the partitioned window feature map refers to
the window used in the attention calculation, shown in
orange window in Figure 3. This process eliminates
unnecessary correlation calculations for pixel value zero
that are masked by the alpha image, allowing for more
efficient learning. For example, in Figure 3(a), the
normal window partitioning has 384 window partitions,
while the proposed method in Figure 3(b) has 119
window partitions, indicating that the number of
windows is reduced to less than one-third, and the
attention calculation is more lightweight. Note that
although Figure 3 shows a 32 x 32 window division for
visual clarity, the actual calculation is divided more

finely because the window is partitioned in 8 x 8

OWS 119 windows
(a) Normal window partition (32 pixels per windows) (b) Proposed window partition (32 pixels per windows)

+++ Window used for attention calculation

Fig. 3 Differences in window partitions.
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(a) Original Image (mkodim03)

(b) Window-based attention module

(c) Masked window-based attention module

Fig. 4 Differences in feature maps after attention calculation; in

(c) black means no difference.

windows. The same method as in Equation (6) is used
for the attention calculation. Figure 4 shows the
difference between the window-based attention module
of the conventional method and the feature map after
the calculation of the proposed method. In Figure 4(c), it
can be seen that the proposed masked window-based
attention does not compute the areas masked by the
alpha image, whereas the normal window-based
attention in Figure 4(b) computes an attention map for
the entire image. These new processes are used as an
alternative to the window-based attentions in Figure 2.

3.2 Network architecture

The proposed network architecture is shown in Figure
5. As with our previous study, the RGBA input image is
separated into RGB and alpha channels, and each
channel are input to different networks. The encoder
output of each network is connected to the Channel-wise
Autoregressive Model of Minnen et al. [12],

As shown in Figure 5, the RGB network introduces
the aforementioned Masked window-based attention
module. This module requires an alpha image.
Therefore, the input xupr, and output Xupre are changed
to the appropriate resolution respectively using
maxpool2d with a kernel size of 3 and a stride of 2 and
used in the attention module. The alpha network uses
the Simplified attention module used in Cheng et al. [14]
to reduce computational complexity.

The decoder side enhancement module, which was
proposed by Liu et al. 16l is introduced in the final layer
of RGB decoder and Alpha decoder. This module
removes compression artifacts in lossy compression.
Figure 6 shows the network architecture of this module.
The decoder-side enhancement module first extends the
channels of the input feature map to 32 channels using
the point wise convolution layer. Thus, after applying
the three residual blocks, it applies them back to the
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o

\]
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A
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Fig. 6 Decoder-side enhancement module.

RGB Network ---P =3
Alpha Network - P =1

input channels using the point wise convolution layer at
the end.

Note that in Figure 5, GDN is generalized division
normalization (17 and IGDN is inverse generalized
division normalization.

3.3 MSE for loss function

We assume that assigning the bits masked in the
alpha channel to the bits in the unmasked area
improves the image compression performance.
Therefore, we propose a Mean Squared Error (MSE) that
calculates the reconstruction error of only the pixels
displayed by the calculation of distortion in Equation (5).
The proposed MSE is calculated by performing the

following calculations.
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Input = xpgp © alphainpy: (8)

Output = Rpgg O alphainput 9
alphainput @L,j,c)

height width
Ny D
ce{r,g,b}
height width
WSt =,

{Input(i, j, c) — Output(i, j, c)}
ce{r,g,b}

(10)

(11)

In Equation (7), Xuphe is the input of Alpha Encoder and
it is 8-bit image data, so this calculation results in xupre
being binary data. Next, the operations in Equations (8)
and (9) are combined to match each other's RGB
calculation regions. It should be noted that alpha;npu:
copies its own pixels and expands them to 3 channels
before substituting them into Equations (8) and (9). The
operations © in Equations (8) and (9) mean the
Hadamard product. Subsequently, the total number of
target pixels, N, is calculated using Equation (10).
Finally, by calculating Equation (11), the MSE of pixels
in the unmasked region in the alpha channel can be
compared. The reason why low-transparency regions in
the alpha channel are also included in the calculation of

MSE in this calculation is that they may not be
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reconstructed correctly, such as hair or clothing. Note
that in the alpha network, the usual MSE is used to
calculate the reconstruction error in Equation (5). In
addition, in this paper, MSErgs means the MSE used for
RGB signals and MSEa;pr, means the MSE used for
alpha channel.

3.4 Constraints for the decoded alpha image

In general, the image decoded with lossy compression
may contain compression noise. Therefore, we propose to
introduce constraints on the decoded alpha image. In an
alpha image normalized to 0-1, 0 and 1 correspond to the
inside and outside of the masked region, while the other
intermediate values represent the boundary between the
masked and unmasked regions. The proposed constraint
sets the pixel value of the region bounded by pixel value
1 to 1 and the pixel value of the region bounded by pixel
value 0 to 0. The constraints shown in Figure 7 allow us
to guarantee that compression noise is removed while
maintaining the pixel values at the boundaries between
masked and unmasked areas. It should be noted that we
apply this constraint only during the evaluation phase to

avoid destabilizing the learning process.

4, Experiments and Discussions

To evaluate the performance of the proposed method,
experimental results on the following two perspectives
are shown. The first is the overall performance of the
proposed method compared to existing methods. The
second is a comparison with a 4-channel RGBA network.

As ablation studies, the performance of the masked

window-based attention module of the proposed method is

Fig. 7 Example of constraints on the proposed alpha image.
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compared with the window-based attention module of Zou
et al. 2. Furthermore, performance of different training
datasets are compare between using only COCO dataset [18!
and using COCO dataset and P3M-10k [19],

4.1 Experimental conditions

For training the network, 118,287 images from the
COCO dataset '8! were randomly cropped to a size of 256
x 256 and the segmentation information provided by its
dataset was used as alpha images. Since this data is
binary data, we further used 9, 422 RGBA images from
P3M-10k 191, cropped to a resolution of 256 x 256 with 30
RGBA images per one image. In order to prevent all
pixel values from being 0 or 255 when cropping, the
images were cropped to satisfy one of the following two
conditions.

1. At least 30% of the pixels in the image have a pixel

value of 0 or 255

2. 80% or more of the pixels in the image have values

between 0 and 255
To account for the diversity of the training images, we
used a mixture of unmasked images (all pixel values in
the alpha channel were 255) with a 25% probability of
being unmasked by the alpha image while training the
RGB network. To evaluate the performance of the
network, a total of 24 photos from the Kodak Photo CD
dataset 20l with a resolution of 768 x 512 were used, and
alpha images were manually created as evaluation
images. The images used during the evaluation are
available in 21, In this paper, we refer to this dataset as
the Masked Kodak dataset. Adam optimizer (22! was used
to train the network and the batch size was set to 4.

The RGB network and the alpha network were trained
separately. The loss function used for training was the
same as in Equation (5), and the reconstruction error D
of the loss function was the normal MSE for the alpha
network and the MSE of the proposed method for the
RGB network. To avoid confusion with ordinary PSNR,
this paper refers to the proposed method MSEgrgn
converted to PSNR as PSNRrgp and MSEapn, converted
to PSNR as PSNRaipha. The values of hyperparameters A
were set to {256, 512, 1024, 2048, 4096}. The alpha
network was trained for a total of 600, 000 iteration. The
first 220,000 iterations was trained with a learning rate
of 1 x 104, and the remaining 380,000 iterations was
trained with a learning rate of 1 x 10-5. On the other
hand, the entire RGB network was trained with
1,500,000 iterations. Up to the first 1,000,000 iterations,
it was trained with only A = 4096 with a learning rate of

1 x 104 The subsequent 500,000 iterations were trained
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with a learning rate of 1 x 10-5 by respectively varying
the hyperparameter A. All proposed networks were
implemented in PyTorch and experiments were
performed on NVIDIA RTX A5000.

4.2 Experimental results

As a quantitative evaluation, rate distortion
performance was evaluated. The average results of the
Masked Kodak dataset for the proposed method, BPG ¢!
and AVIF ¥ are shown in Figure 8.

From Figure 8, it can be seen that the proposed
method improves the image quality at all bit rates
compared to the other methods. Note that the bpp of the
proposed method in this graph is the sum of the bpp of
the alpha network and the RGB network. The
combination of values of 1 used to create the graph is
shown in Table 1.

For BPG encoding and decoding, we used the officially
distributed version for Windows, and for AVIF 9 we
used libavif 231,

In addition, mkodim15 from the Masked Kodak Dataset
is shown in Figure 9 as a reconstructed image when
optimized with MSEgrgg as a qualitative evaluation.

The image in Figure 9(a) is the input image and
Figures 9(c), 9(d), and 9(e) show the reconstructed
images cropped by each method. Compared with the
input image in Figure 9(b), the AVIF ¥ and the BPG ¢!
in Figure 9(c) and Figure 9(d) have noticeable banding
noise near the nose, whereas the proposed method in
Figure 9(e) has less noise and is visually closest to the

input image.

PSNRpgp(dB)

—e—BPG

—e—AVIF

—e—Proposed Method

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

bpp(bit per pixel)

Fig. 8 Performance evaluation on Masked Kodak dataset.

Table. 1 Combination of values of 4 used to create the graph.

Network Value of %
RGB network 4096 2048 1024 512 256
Alpha network 1024 1024 1024 512 256

(@) Original Image (mkodim15)

(b) Cropped Original Image
(bpp/PSNRggp)

(c) AVIF(0.307/30.843)

(d) BPG(0.313/30.213)

(e) Proposed Method(0.315/31.362)

Fig. 9 Visualization of reconstructed images.

Table. 2 Comparison of network parameters.

Method Network Parameters
Zou et al. 75,235,779
Proposed Method 60,744,072

Next, the network parameters of the proposed method
are listed in Table 2. As a reference, the parameters of
the Zou et al. 12l network for RGB images are also shown.

The results in Table 2 are for an input image with
batch size 1 and input resolution of 256 x 256, calculated
using torchinfo 1.8.0. From Table 2, the proposed
method reduces the network parameters by about 19%,
even though two networks are used. This can be
attributed to the effect of pointwise convolution used in
the final layer of each encoder and decoder.

4.3 Comparison with 4-channel network

Since RGBA images are in the form of RGB images
with an additional alpha channel for transparency
information, they can be adapted to RGBA images by
simply changing the input and output channels of a
normal 3-channel RGB network to 4 channels. Therefore,
we compare the proposed network, which processes RGB
and Alpha channels separately, with the 4-channel
network. Figure 10 shows the network architecture for
comparison. In addition, in a 4-channel network, the RGB
and alpha channels must be optimized simultaneously.
Therefore, we use the equation (5) loss function D(x, %)

with the following modification of the Equation (12) in the
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Fig. 10 4-channel network for comparative method.

4-channel network.

D(x,%) = (MSEggp + MSEqipnq) (12)

Figure 11 shows the graph of the results compared using
PSNRges and Figure 12 shows the results compared
using PSNRaipha. In addition to the comparative method,
the results of Minnen2018111 and Zou20222! CNN-based
and Swin Transformer-based models with 4-channel
input and output layers are also shown. Figure 11 shows

that there is a noticeable difference in performance at

—e—Proposed Method
—e— Comparative Method
—8—Z0u2022[2](CNN)
Z0u2022[2](STF)
—8—Minnen2018[11]

PSNRgg5(dB)

0.2 0.65

bpp(bit per pixel)

0.8 0.95

Fig. 11 Performance difference between the proposed method and
4-ch Network compared with PSNRggg.
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Fig. 12 Performance difference between the proposed method and
4-ch Network compared with PSNRapha.

207

high bit rates. However, the performance difference
becomes smaller at lower bitrates. In the case of
PSNRAphe in Figure 12, there is a large performance
difference. The reason for the performance difference
between the proposed method and the comparative
method as shown in Figure 12, can be attributed to the
fact that the comparative method utilizes a single
entropy model shared between the RGB and alpha
channels, making the optimization process more
complex. In contrast, the proposed method employs
separate entropy models for the RGB and alpha
channels, allowing the entropy model to be optimized
specifically for the alpha channel. Note that the graph of
the proposed method is flat as one moves to the right
because 1 is fixed.

Therefore, by processing the RGB and alpha images
separately, the training and network construction can
consider the signal characteristics of each. Furthermore,
each bit rates of the RGB and alpha channel can be changed
independently, making them more practical to use.

4.4 Ablation study

4.4.1 Masked window-based attention module

performance

To demonstrate the effectiveness of the Masked
window-based attention module, a comparison is made
with the regular window-based attention module. This
regular window-based attention module is the same one
used in our previous study 8. Experimental conditions
are the same as in 4.1.

Figure 13 shows that the network with the proposed
method, the masked window-based attention module,
performs better at all bit rates.

4.4.2 Performance differences due to differences

in training data

In this section, to evaluate the performance
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Fig. 13 Performance differences between different attention
modules in RGB network.

differences of the proposed method on different datasets,
experiments were conducted on networks trained on
both the COCO dataset and P3M-10k, and on networks
trained on the COCO dataset alone. The learning
method is identical to the method described above.
Figure 14 shows the experimental results in the
quantitative evaluation for the Masked Kodak dataset.
From the experimental results in Figure 14 show that
training on the COCO dataset and the P3M-10k dataset
improves performance. Figure 15 is also an image of the
qualitative evaluation. Focusing on the tree branches in
the upper left corner in Figures 15(b), 15(c), and 15(d)
the model trained with the two datasets in Figure 15(c)
can represent the same amount of branches compared to
the original image in Figure 15(b), while the model
trained with only the COCO dataset in Figure 15(d)
clearly shows a decrease in the amount of branches. The
reason for these experimental results is that it is
difficult to capture complex shapes using only the COCO
dataset, which is binary data.

4.4.3 Analysis of the impact of handling transparent

regions on RGB network performance

In the experiments, to reduce the amount of data, the

N
>

PSNRipna(dB)
IS

—8—COCO dataset and P3M-10k dataset

—8—COCO dataset

0.04 0.05 0.06 0.07 0.08
bpp(bit per pixel)

Fig. 14 Alpha network performance differences due to differences

in training data.
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(a) Original Image (mkodim22)

L u‘.
g M - g ﬁf

(b) Cropped Original Image (¢) COCO dataset and P3M-10k (d) COCO dataset
(bpP/PSNR pipha) (0.0904/38.928) (0.0897/34.225)

Fig. 15 Differences in output images from different datasets.

RGB encoder is trained and evaluated with images in
which the pixel values of the RGB images in the
transparent areas are set to 0 as input to the RGB
encoder. However, since the fact that the alpha image
acts on the RGB image during training, such as in the
proposed attention module, it is also important to train
the RGB image with images in which the pixel values of
the RGB image in the transparent areas are not set to 0.
Therefore, training is performed with the pixel values of
the RGB image of the transparent areas is retained as it
is, and the results are compared and analyzed. This
comparison is expected to establish a compression
method that takes into account the effect of areas
masked by the alpha image. The experimental results
are shown in Figure 16.

In Figure 16, the w/ zero process is the case where the
pixel values of the RGB image in the transparent region

are set to zero during training, and the w/o zero process is

PSNRggs(dB)

—e—w/ zero process

31 —o—w/o zero process

0.2 0.35 0.5 0.65 0.8 0.95
bpp(bit per pixel)

Fig. 16 Differences in output images based on training methods

for transparent regions in RGB images.
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the result when they are not set to zero. Figure 16 shows
that the overall performance is higher when the pixel
values of the RGB images in the transparent regions are
set to zero than when they are not set to zero.

4.4.4 Analysis of the impact of the simplified
attention module on the performance of the
alpha network

This study aims to improve the performance of

conventional alpha network by introducing a simplified
attention module. To evaluate performance this module,
we conducted re-training under identical experimental
conditions with models that do not utilize the simplified
attention module and compared the quantitative
evaluation results. Figure 17 presents the quantitative
evaluation results based on the presence or absence of
the attention module. The "w/ simplified attention
module" refers to models where the simplified attention
module is introduced in both the intermediate and final
layers of the encoder and decoder. In contrast, "w/
simplified attention module only in the middle layer"
indicates models where the attention module is
introduced only in the intermediate layer. Experimental
results reveal that models with the attention module
introduced in both the intermediate and final layers
exhibit superior performance, particularly at medium
bitrates. Note that at high bitrates, the model "w/
simplified attention module only in the middle layer"
exhibited superior performance. However, since the
experiments in Sections 4.2 and 4.3 did not utilize high-
bitrate data for the alpha channel, a model incorporating
simplified attention modules in both the middle and
final layers, which demonstrated better performance at

medium bitrates, was adopted.

49

48
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a4 —e—w/ simplified attention module

—e—w/o simplified attention module
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—e—w/ simplified attention only in the middle layer
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Fig. 17 Performance differences with and without simple

attention module.

5. Conclusion

We propose a new network architecture for RGBA
format image compression using deep learning. The
proposed network architecture consists of two networks,
one for RGB signals and the other for alpha channel. For
the RGB network, a new attention module Masked
window-based attention module using alpha channel is
introduced. Experimental results show that the
proposed method has better performance than existing
methods at all bit rates. We also demonstrate the
proposed method outperforms the learned compression
method that simply extends the input and output layers
to 4 channels like classical RGBA compression methods.
We also found the compression efficiency can be
improved by masked window-based attention module
compared with the previous window-based attention
module and another attention module for alpha channel
network can contribute to improved compression
efficiency at higher bit rates. Furthermore, it was found
that the performance of the alpha network varies
significantly depending on the training data. Future
work includes investigation of an image evaluation
metric for RGBA images for the loss function. For
example, MSE, like the method proposed in this paper,
cannot obtain a visually superior decoded image.
Therefore, it is necessary to develop an image evaluation
metric such as MS-SSIM that takes mask images into
account. In addition, since the entropy model employed
in this study compresses without using mask images, it
is important to introduce a compression method that
takes mask regions into account in order to achieve

further efficiency in image compression.
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