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Reproducing material-specific appearances of optically
complex objects using a view interpolation network

Chihiro Hoshizawa , Taishi Iriyama T, Takashi Komuro (member)f

Abstract In this study, we attempt to reproduce material appearance of objects with various optical characteristics using
a free viewpoint image generation network. The network takes RGB and depth images captured at four specific viewpoints as
input and generates an image at an intermediate viewpoint inside them. The RGB images are geometrically transformed into
images seen from the output viewpoint by image warping. Then, an image with interpolated luminances is generated using
a U-Net based image transformation network. We use adversarial loss to generate material-specific appearances rather than
obtaining optically correct outputs. In our experiments, we used metal materials that reflect the surrounding environment,

glass materials that transmit and refract light, and materials with sub-surface scattering. The results showed that the use of

adversarial loss gave better results for all these materials both in LPIPS, an image quality assessment metric that is close to

human perception, and evaluations by human participants.

Key words: free viewpoint image, view synthesis, image transformation.

1. Introduction

Internet shopping has become widespread in recent
years, but in many cases, users are presented with only a
few photographs of products, which may not give them
a sense of the materials. The visual sense of materi-
als is provided when light that interacts with an object
such as reflection, transmission, and scattering, enters
human eyes. Especially for objects such as metal and
glass, changes in luminance depending on the viewpoint
contribute significantly to the perception of materials.
Therefore, a technology for generating free viewpoint
images with the luminance changes from a few input
images would be useful for reproducing the material
apparances of such objects.

There are two major approaches to free viewpoint
image generation. One is to estimate both 3D geome-
try and reflectance of an object or a scene from input

D23 By estimating the parameters of spec-

images
ular reflection, luminance change by viewpoint can be
reproduced. However, luminance change due to trans-
mission, refraction, and sub-surface scattering are not
reproduced, and it is generally difficult to estimate these
optical characteristics from images.

The other is to generate free viewpoint images by in-

5)6)

terpolating input images This approach does not
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explicitly estimate 3D geometry or optical parameters,
but directly generates images at different viewpoints.
It has been shown that image interpolation using deep
neural networks can interpolate structural information
rather than simply interpolating pixel values. However,
it has not been verified whether it is possible to re-
produce luminance change by viewpoint due to various
optical phenomena.

In this study, we use a free viewpoint image gener-
ation network that reproduces changes in luminance
depending on the viewpoint to provide material per-
ception of objects with various optical characteris-
tics. Objects such as metal and glass greatly change
their appearance by viewpoint, helping humans to per-
ceive their material, but it is difficult to obtain cor-
rect interpolation results for optically complex ob-
jects. Therefore, we use adversarial loss™ to gener-
ate material-specific appearances empirically without
explicitly model optical characteristics. We verify the
effect of adversarial loss on material appearance gen-
eration by the experiment using metal, glass, and sub-

surface scattering materials.
2. Related work

2.1 3D geometry and reflectance estimation
Many studies have been conducted to estimate the
three-dimensional shape and reflection properties of ob-
jects or scenes from a captured image or images, which
can reproduce images viewed from different viewpoints.

Most of them employ simple parametric models such as
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the Blinn-Phong or Cook-Torrance models as reflection
properties, estimating diffuse albedo, specular albedo,
and roughness. Some assume uniform reflection prop-

89 while others estimate

erties per object or region
spatially-varying reflection properties”®®, and the lat-
ter estimates reflectance parameters pixel by pixel.

Some studies estimate 3D shape and reflection prop-
erties from images taken from several different view-
points. Biet al. proposed a method to estimate normal,
diffuse albedo, specular albedo, and roughness distribu-
tions from images taken from six different viewpoints'®.
A depth map is first estimated from each input image,
and then the reflection properties are estimated from
warped input images. Ono et al. proposed a method
to estimate the BRDF, a function that represents re-
flectance properties, based on the 3D shape of an ob-
ject acquired by Multi-View Stereo (MVS) technology®.
Their method represents BRDFs with fewer parameters
by using principal components extracted from a BRDF
dataset to reduce the number of measurements neces-
sary for estimation. These methods can estimate three-
dimensional shape and reflection properties from images
and reproduce images from different viewpoints. How-
ever, they estimate only reflections on object surfaces
and do not target other optical phenomena.

In recent years, a method called NeRF has attracted
much attention as a high-precision 3D reconstruction

1913 In this method, the scene

method from images
is represented as a 5D continuous function that out-
puts viewpoint-dependent radiance and volume den-
sity, which is learned by a neural network. New
viewpoint images are synthesized by volume rendering,
which reproduces not only reflections but also trans-
missions. However, NeRF cannot handle refraction and
sub-surface scattering due to the nature of volume ren-
dering, and it requires a large number of input images.

2.2 Structural interpolation of images

An image is two-dimensional information, but high-
level features such as the three-dimensional shape and
positional relationship of objects in the image are some-
times referred to as the structural information of the im-
age. There are attempts to generate free viewpoint im-
ages by interpolating structural information using neu-
ral networks.

Oring et al. proposed an image interpolation method
that reflects the three-dimensional shape of an object
by interpolating the deep representation of a neural net-
work®. It is known that the deeper layers of an au-

toencoder represent more structural information com-
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pressed from the input image, and this deep representa-
tion enables image transformation that better captures
the meaning of the image.

Kalantari et al. proposed a method for generating
free viewpoint images by image interpolation using a
neural network®. In this method, images captured at
the four corners in a two-dimensional array of view-
points are used as input to generate images at the other
viewpoints. The first neural network extracts features
from the input images and generates a disparity map.
From the disparity map and the input images, warped
images seen from a new viewpoint are generated, and
these images are input to the second neural network to
obtain images from a new viewpoint.

Besides the combination of an RGB image and a
depth map, there is another way of representing a 3D
scene with multiple translucent image layers called Mul-
tiplane images (MPI). Several methods have been pro-
posed for generating free viewpoint images by estimat-
Since MPI is

represented by translucent images, it can handle light

ing MPI using neural networks'®'®1%),

transmission. It can also manage perfect specular re-
flection by estimating the image reflected in a mirror as
layer information positioned behind the mirror. How-
ever, it is difficult to handle coarse specular reflection,
refraction, and sub-surface scattering by simply synthe-
sizing images from MPI.

Mildenhall et al. proposed a method that estimates
the MPI for each viewpoint of input images, generates
a new viewpoint image from each MPI, and combines
all the generated images using a weighted sum for the
final output'™. This enables reproduction of luminance
changes due to viewpoint shifts. However, since it is
a linear interpolation, sharp highlight changes may not
be reproduced.

By using a neural network to interpolate structural
information, it may be possible to reproduce a variety
of material-specific optical phenomena. However, to the
best of our knowledge, no such investigation has been

conducted.
3. View interpolation network

Figure 1 shows the network used in this study. The
network takes RGB and depth images taken at four spe-
cific viewpoints as input and generates an image at an
intermediate viewpoint inside them.

First, the RGB images are geometrically transformed
into images seen from the output viewpoint by image

warping using the depth images. Image warping trans-
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Fig. 1: Network architecture

forms an image taken from the input viewpoint into an
image seen from the output viewpoint using forward
warping, as shown in Fig. 2. Using the position of a
pixel in the input image and the depth value at that
position, the 3D coordinates from the input viewpoint
are obtained, converted to the coordinates seen from
the output viewpoint, and projected to the image coor-
dinates. This process is performed for all pixels in the

input image to obtain the warped image.

change viewpoint

’
convert to
point cloud

project to
an image

input image warped image

depth image

Fig.2: Forward warping

The warped four input images are input to the gener-
ator, and the generator is trained to output an interpo-
lated image. The generator is trained not only to make
the output image closer to the ground truth, but also
to generate an image of a specific category using the
mechanism of a generative adversarial network (GAN).

18)
)

This method is similar to that used in pix2pix a

GAN-based image transformation network, but unlike
pix2pix, which gives the pair of generator input and
output to the discriminator, our method gives only the
generator output to the discriminator. This is because
the purpose of this study is to reproduce the specific
appearance of a certain material.

U-Net'? is used as the generator and the four warped
RGB images are concatenated in the channel direction
to form twelve channels and are input to the genera-
tor. The output is a single RGB image and the net-
work is trained to generate the interpolated image of
the four input images. The idea of concatenating the
warped input images in the channel direction was used
in Kalantari et al.’s study®, and is also used in our
method. The number of input images is set to four,
which is also the same as in their study, because the
camera positions are expressed in two dimensions, and
at least two ways are necessary for each dimension. Al-
though their study uses a convolutional neural network
(CNN) for viewpoint interpolation, we use U-Net which
is used in pix2pix for image transformation.

The discriminator used to calculate the adversarial
loss is the same as that of a typical generative adver-
sarial network (GAN)™. Either a generated image or a
true image is input to the discriminator, which outputs
the result of estimating whether it is real or fake.

The loss function used to train the generator is a com-
bination of L1 loss L; and adversarial loss Lyq,. The

L1 loss is calculated as the L1 norm of the difference be-

223
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tween the generated image and the ground truth, and
the adversarial loss is calculated by the Binary Cross-
Entropy as shown in Eq. (2).

(1)

Lado(G, D) = Eylog D(y)] + Ex[log(1 — D(G()))],
(2)

L=1L+ )\memngadU(G,D),

where X is a weight, D(y) is the output of the discrim-
inator when a true image is input, and D(G(z)) is the
output of the discriminator when a generated image is

input.
4. Dataset creation

We used CG images obtained by rendering 3D mod-
els to create a dataset. BlenderProc, a package for cre-
ating data for machine learning with the 3D software
Blender, was used. We used seven 3D models down-
loaded from the Stanford 3D Scanning Repository*.
Six models (Stanford Bunny, Happy Buddha, Dragon,
Lucy, Asian Dragon, and Thai Statue) were used for
training, and one model (Armadillo model) was used
for testing. The materials of the 3D objects were set
to be metal, glass, and sub-surface scattering materi-
als using BSDF parameter settings of Blender, while
the color and other parameters were set randomly. For
the environment maps to reproduce the reflection and
transparency of the surrounding environment, we used
HDRI images taken from Poly Haven **, 500 images for
training and 136 images for testing. The size, position,
and orientation of the 3D object, the orientation of the
environment map, and the direction of the light source
were set randomly in each image.

The cameras were placed on a sphere centered near
the 3D object, and were oriented toward the center of
the sphere. The four input viewpoint cameras were
placed at the vertices of a spherical quadrangle, and
their positions were set to have an angular difference of
27/9 in Euler angles. Twenty output viewpoint cam-
eras were placed, and their positions were randomly
set inside the spherical quadrangle of input viewpoints.
Figure 3 shows an example of object and camera place-
ment. The red camera represents the input viewpoints
and the white camera the output viewpoints.

The background of the rendered images was painted
black as shon in Fig. 4 so that the network can focus
on the object rather than the background.

* http://graphics.stanford.edu/data/3Dscanrep
** https://polyhaven.com/
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Fig. 3: Example of object and camera placement

(a) before removal

(b) after removal

Fig. 4: Background removal

As training data, 240,000 sets of input/output im-
ages were generated for each material type, with 2,000
random material parameters, six 3D models, and 20
random output viewpoints. As testing data, 4,000 sets
of input/output images were generated for each mate-
rial type, with 200 random material parameters, one 3D
model, and 20 random output viewpoints. The image

size was set to 256 x 256 pixels.
5. Experiment

5.1 Setup

In this experiment, we used the created dataset for
training and testing data, and the network was trained
with and without adversarial loss.

The weight A in the loss function was set to 0.001.
The discriminator was not pre-trained. When the value
of A was made too large, it was out of balance with
the L1 loss and caused mode collapse, but a smaller
value resulted in stable learning. Adam was used as
the optimization algorithm, with o = 1074, 8; = 0.9,
Ba = 0.999, and € = 10~® for training both the genera-
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tor and discriminator.

5.2 Output examples

Examples of images given as input to the trained net-
work are shown in Figure 5, and the generated images
at the center viewpoint between the four input view-
points for the methods without and with adversarial
loss, and ground truth images are shown in Figure 6.
For the generated and ground truth images, an enlarged
version of the central part is placed next to each im-
age. For the metal material, the generated images with
and without adversarial loss both produce output im-
ages close to the ground truth images. However, the
generated images without adversarial loss are slightly
blurred, and the metal-specific sharp shading is weak.
In contrast, the generated images with adversarial loss
successfully reproduce sharp shading. For the glass ma-
terial, the generated images without adversarial loss are
quite blurry and the material appearance of the glass
is barely perceivable. In contrast, the generated images
without adversarial loss have clear boundaries and ex-
hibit some glass-like features, but they are not perfect
For the sub-

surface scattering material, the generated images with

compared to the ground truth images.

and without adversarial loss appear almost identical to
the ground truth images and are indistinguishable to
the human eye.

5.3 Evaluation of image reproducibility

First, we evaluated how close the generated images
were to ground truth. We used three types of evalu-
ation metrics, PSNR, SSIM, and LPIPS, for objective
evaluation The average values of objective evaluation
metrics for all test data are shown in Table 1.

PSNR is an evaluation metric that uses per-pixel er-
rors, while SSIM is a metric that evaluates the similarity
of image structures. LPIPS(Learned Perceptual Image
Patch Similarity)*® calculates the distance between the
intermediate layer vectors of a trained image classifi-
cation network with input of the generated image and
ground truth, respectively. Since LPIPS uses features
extracted by an image classification network, it gives
results that are closer to human eye evaluation than
classical evaluation metrics such as PSNR and SSIM.
We used the trained model of AlexNet?" to calculates
LPIPS in this experiment. The larger the PSNR and
SSIM, and the smaller the LPIPS, the better the results.

For PSNR and SSIM, there was no significant differ-
ence between the methods with and without adversarial
loss for any material, but for LPIPS, the method with

adversarial loss showed better results than the method
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Table 1: Average values of objective evaluation metrics
for all test data. w/o AL and w/ AL stand for the meth-
ods without and with adversarial loss, respectively. SSS

stands for sub-surface scattering.

material method | PSNRfT SSIM?T LPIPS|
w/o AL | 26.943 0.9320 0.0897
metal
w/ AL 26.368 0.9299 0.0534
| w/o AL | 24.746 0.8593 0.2497
ass
& w/ AL | 25.167 0.8711 0.1111
gss w/o AL | 35.109 0.9829 0.0167
w/ AL 34.648 0.9809 0.0142

without adversarial loss, and the differences were larger
in the order of glass, metal, and sub-surface scattering
materials.

5.4 Evaluation of material perception

The objective of this study is not to faithfully repro-
duce optical phenomena but to correctly provide the
perception of materials. Therefore, we conducted a sub-
jective evaluation by human participants. We recruited
eleven male and female participants in their twenties.
The participants were presented with the screen shown
in Fig. 7 , where ground truth was presented on the left
side of the screen and the outputs without and with ad-
versrial loss were presented in a random arrangement on
the right side of the screen, and were asked to choose
the one that they felt was closer to ground truth in
terms of material perception. This was repeated 100
times for each of the three materials (metal, glass, and
sub-surface scattering) in turn, for a total of 300 times
per participants.

In order to reproduce natural material appearances,
highlights and reflections should change smoothly along
with viewpoint movement. Therefore, we presented
videos in which the viewpoint changes dynamically.
Starting from the upper-left input viewpoint, the cam-
era moved in the lower-right direction to near the cen-
ter, then rotated clockwise to the upper-right input
viewpoint. The videos were presented at 15 fps, and this
movement took place over 30 frames (2 seconds). An
example of a ground truth video in the case of a metal
material is shown in Fig. 8. After reaching the upper-
right viewpoint, the camera returned to the upper-left
viewpoint along the same trajectory. The same move-
ment was repeated until the participants chose the an-
swer.

The rate of the answers who chose the output with
adversarial loss for each material type is shown in Ta-
ble 2. The result of a binomial test showed that the
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(a) Metal

(b) Glass

) Sub-surface scattering

Fig. 5: Examples of input images

p-values for all materials are smaller than the signifi-
cance level of 1%, indicating that there was a significant
difference in choices between the outputs without and

with adversarial loss.
6. Discussion

The experimental results showed that the method
with adversarial loss performed better both in LPIPS

and in the subjective evaluation by humans, while there

was not much difference in PSNR and SSIM between
the methods with and without adversarial loss. This
study aims not to obtain optically correct output but
to reproduce the material appearance of objects. Ad-
versarial loss is introduced to reproduce the material-
specific appearance, even for objects with complex op-
tical characteristics that make accurate interpolation
difficult.
in PSNR and SSIM, which make pixel-by-pixel com-

Therefore, the lack of significant differences
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w/o adversarial loss w/ adversarial loss

(a) Metal

w/o adversarial loss w/ adversarial loss ground truth

(b) Glass
¢ /\,
X g

w/o adversarial loss w/ adversarial loss ground truth

(¢) Sub-surface scattering

Fig. 6: Generated images at the center viewpoint between the four input viewpoints.

parisons, is as expected, and the fact that the method achieved. The results of subjective evaluation also show
with adversarial loss showed significantly better results the same trend as for LPIPS.

in LPIPS, which is closer to human perceptual charac- The method without adversarial loss uses a loss func-
teristics, indicates that the objective of this study was tion with only an L1-Norm term, which means that it
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Fig.8: An example of a video used in the experiment

(metal, ground truth)

Table 2: The result of subjective evaluation. The rate
indicates the percentage of the answers that chose the
output with adversarial loss. The total number of an-
swers were 1,100 for each material type. SSS stands for

sub-surface scattering.

material | rate (w/ AL) p-value
metal 99.0 % ~0
glass 99.6 % ~0
SSS 55.9 % 0.0000494

minimizes per-pixel errors. PSNR and SSIM are evalu-
ated by comparing pixel values or their statistics with
ground truth, and similarity of pixel values maximizes
these scores. This may have led to slightly better PSNR
and SSIM scores for metal and sub-surface scattering
materials.

For the glass material, however, the method with ad-
versarial loss achieved slightly better PSNR and SSIM
scores. This is probably because reproducing the ap-
pearance of glass materials is particularly challenging

compared to metal and sub-surface scattering materi-
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als. The method without adversarial loss obviously pro-
duced blurred images and failed to reproduce the ma-
terial appearance. Glass materials tend to have larger
and more irregular luminance variations with changes in
viewpoint than other materials because of transmission
and refraction. Therefore, it would have been difficult
for the network to estimate luminance changes for such
complex glass materials, and accurate output could not
be obtained. It appears that the use of adversarial loss
helped reproduce the unique appearance of glass, which
also led to the reduction of per-pixel errors.

The reason why the method with adversarial loss per-
formed better in LPIPS for all materials may be that
the images generated by the method with adversarial
loss were recognized as closer to ground truth in terms
of image classification, since LPIPS is computed from
the middle layer vectors of an image classification net-
work. LPIPS gives results similar to the evaluation
by the human eye, and the experimental results show
the same tendency in LPIPS and subjective evaluation.
These results suggest that adversarial loss is effective
in reproducing natural material appearance as seen by
the human eye.

As a qualitative analysis, the method with adversar-
ial loss reproduced the unevenness of the object sur-
face more finely than the method without adversarial
loss for metal materials,. This may have led to the re-
sults of subjective evaluation by the participants. For
glass materials, the difference in appearance between
the generated images without and with adversarial loss
was particularly noticeable. Even with method without
adversarial loss, highlights were reproduced to some ex-
tent for metal materials, but for glass materials, high-
lights were hardly reproduced without adversarial loss.
This result clearly shows the difficulty of reproducing
appearance of glass materials. For sub-surface scatter-
ing materials, both methods produced fairly accurate
outputs, and it is difficult for the human eye to distin-
guish the difference. However, the subjective evalua-
tion by the participants showed a significant difference,
although not as large as those for metal and glass ma-
terials. Since the participants were shown video images
with moving viewpoints for evaluation, the effect of ad-
versarial loss in sub-surface scattering would have been

more easily seen.
7. Conclusion

In this study, we attempted to reproduce the appear-

ance of materials with complex optical characteristics
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using a viewpoint interpolation network that generates
a new viewpoint image from a few input images. By
introducing adversarial loss, we aimed to reproduce im-
ages with material-specific appearance, rather than gen-
erating images as close as possible to ground truth. We
conducted an experiment using metal, glass, and sub-
surface scattering materials and confirmed the effective-
ness of adversarial loss in reproducing appearances for
all types of materials both in an objective metric that is
close to human perception, and evaluations by human
participants.

Future work includes more general viewpoint inter-
polation. In this study, input and output viewpoints
were limited to those on a sphere, and the input view-
points were fixed to four specific locations. It would be
possible to make reproduction of material appearance
by viewpoint interpolation more practical by extending
The

effect of the number of input images on output image

the viewpoint arrangement to be more flexible.

quality should also be investigated.

In this study, images with the background removed
were used as input to allow the network to focus on
the object region. However, in real applications such
as Internet shopping, it is necessary to interpolate the
background region as well. In order for the network to
distinguish between object and background regions, it
would be effective to explicitly provide the object region
as a mask.

Comparison with existing methods is also necessary.
This study has a different objective from conventional
free-viewpoint image generation and uses a specialized
dataset. In addition, depth images are provided as sup-
plementary information, making it difficult to conduct
a fair comparison with existing methods. Therefore, the
method of comparison should also be carefully consid-

ered.
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