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Abstract To efficiently compress the sign information of images, we address a sign retrieval problem for the block-wise

discrete cosine transformation (DCT): reconstruction of the signs of DCT coeflicients from their amplitudes. To this end, we

propose a fast sign retrieval method on the basis of binary classification machine learning. We first introduce 3D represen-

tations of the amplitudes and signs, where we pack amplitudes/signs belonging to the same frequency band into a 2D slice,

referred to as the sub-band block. We then retrieve the signs from the 3D amplitudes via binary classification, where each

sign is regarded as a binary label. We implement a binary classification algorithm using convolutional neural networks, which

are advantageous for efficiently extracting features in the 3D amplitudes. Experimental results demonstrate that our method

achieves accurate sign retrieval with an overwhelmingly low computation cost.

Key words: Image coding, discrete cosine transform, sign information, phase retrieval, binary classification, deep neural network.

1. Introduction

Compressing sign information in data is a challeng-
ing problem, and it plays a fundamental role in a wide
range of research fields. In image coding, a large num-
ber of bits, approximately 20% of the total bits, gener-
ated by an image encoder are allocated for the signs, as
reported in [1]. Against this background, many previ-
ous works [2-5] have developed sign compression meth-
ods within the context of image coding, specifically fo-
cusing on compressing signs of discrete cosine trans-
form (DCT) [6] coeflicients.

To reduce the bits for signs, in our earlier work [7,8],
we slightly modified a standardized image encoder and
decoder, such as JPEG, as summarized in Fig. 1. In
the encoder, DCT coefficients of an image are sepa-
rated into the signs, referred to as the true signs, and
amplitudes; the latter is encoded in the first place. The
encoder locally reconstructs the signs using a sign re-
trieval method whose algorithmic procedure is shared
with the decoder. Instead of encoding the true signs,
we encode residuals (XORs) between the true signs and
retrieved ones. In the decoder, an image is decoded
by following the reverse path of the encoding process,
where the XORs between the residuals and retrieved

signs perfectly reconstruct the true signs. If the signs
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are retrieved correctly to some extent, the residuals
have many zeros but few ones; the residuals can be
compressed using entropy coding methods, e.g., [9-12].
Therefore, the accuracy of the retrieved signs is crucial
for successful sign compression.

Various sign retrieval methods have been proposed,
as summarized in Fig. 2a. To the best of our knowledge,
all of the previous methods, without exception, are
based on iterative optimization. For example, in [7,8§],
an image and signed DCT coefficients are alternatively
retrieved, and the signs of the retrieved coefficients are
extracted. In [14], the signs are regarded as variables
and are optimized in an iterative manner. Previous
methods have demonstrated the ability to accurately
retrieve a large portion of the signs; for example, as
reported in [8], roughly 75% of the total signs can be
retrieved. However, these methods come at an exces-
sive computation cost, primarily due to computing the
DCT and the inverse DCT (IDCT) for each iteration.
For example, as reported in [8], it takes approximately
10 seconds to retrieve 256 x 256 signs, making sign re-
trieval impractical for real-time encoding and decoding
scenarios.

To accelerate the speed of sign retrieval, we pro-
pose a fast method without the DCT-IDCT iter-
ation, which is summarized in Fig. 2b. Unlike previ-
ous methods, our method retrieves the signs in a direct
manner, where sign retrieval is regarded as a variant

of a binary classification problem. We first introduce
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3D representations of the amplitudes and signs, where
we pack amplitudes/signs belonging to the same fre-
quency band into a 2D slice, referred to as the sub-
band block [2]. We then retrieve the signs from the 3D
amplitudes via binary classification, where each sign is
regarded as a binary label. We implement a binary
classification algorithm using convolutional neural net-
works (CNNs), which are advantageous for efficiently
extracting features in the 3D amplitudes. Experimental
results demonstrate that our method achieves accurate
sign retrieval with an overwhelmingly low computation
cost: only 0.93% of the execution time taken for pre-

vious methods.

Limitations: Throughout this paper, we utilize
constant-size blocks, as was done in JPEG [15], which
is not compatible with the variable-size ones in state-of-
the-art image coding standards such as high-efficiency

video coding (HEVC) [16] and versatile video cod-
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ing (VVC) [17]. However, we believe that our promising
results (discussed in Section 4) will contribute to further

advancements in the field of image coding.

2. Related work

2.1 Sign retrieval

The sign-retrieval-based method [7], illustrated in
Fig. 1, is a seminal work in sign compression. Sign re-
trieval is known as a special instance of phase retrieval:
namely, determining the signs +1 is identical to retriev-
ing their phases, 0 and 7, on the Gaussian plane. There-
fore, sign retrieval has typically been addressed on the
basis of phase retrieval approaches. Tsutake et al. [7]
proposed an ¢1-norm minimization method, motivated
by the prior works on phase retrieval [18,19]. Lin et
al. [13] proposed a similar method based on total vari-
ation minimization. Suzuki et al. [8] proposed a CNN-

based least squares method. Sidiropoulos et al. [14] pro-
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Fig.3: Sub-band blocks obtained from image, x8 enlarged. Larger amplitudes are represented by brighter lumi-

nance. Positive and negative signs are represented by white and black, respectively. Black regions in amplitudes

and gray ones in signs correspond to non-significant coefficients.

posed a quadratic programming method. All of these
methods, without exception, retrieve the signs via iter-
ative processes, as illustrated in Fig. 2a. For example,
an image and signed DCT coefficients are alternatively
computed in [7, 8], similar to the Gerchberg-Saxton
method [20] and Fienup method [21]. The Frank-Wolfe
method [22], utilized in [14], is another example, which
is a variant of a gradient method and computes the
DCT to determine the descent direction. Due to the
iterative nature, the DCT and IDCT should be con-
ducted in each iteration, leading to significant compu-

tation costs.

2.2 Sign compression without sign retrieval

Ponomarenko et al. [3] proposed a prediction-based
method similar to the sign retrieval-based method [7],
where the amplitudes are encoded before sign compres-
sion. Their method predicts the signs block-by-block by
solving an amplitude-constrained combinatorial prob-
lem, where the signs that minimize an objective func-
tion are searched. To reconstruct the true signs at the
decoder, residuals between the true signs and predicted
ones are encoded. As reported in [3], the bit amount for
the residuals is 60-85% of that for the true signs. Sub-
sequent works, such as [23-25], have been developed to
enhance the accuracy and computation efficiency.

Clare et al. [26] proposed a sign compression method,
known as sign data hiding, which is a fundamental
component in state-of-the-art image coding standards,
HEVC [16] and VVC [17].
to skip encoding a single sign of DCT coeflicients for

This method allows us

each block. The decoder can compensate for the miss-
ing sign by executing a parity check. As reported in
[26], sign data hiding achieves a BD-rate [27] (a rate-
distortion metric) of approximately —0.6% compared
to the HM 4.0 anchor*. Sign data hiding has been im-

proved in subsequent works, such as [28-30], where the

*https://hevc.hhi.fraunhofer.de
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Fig. 4: Coordinate systems.

encoding of multiple signs per block can be skipped.
Tu and Tran [2] proposed a sign compression method
inspired by sub-band coding [31,32]. They constructed
the so-called sub-band blocks, which include ampli-
tudes/signs belonging to the same frequency band, and
the true signs are encoded and decoded in the sub-
band domain. Figure 3 shows examples of sub-band
blocks obtained from an image, where u and v repre-
sent frequency indices along the horizontal and vertical
directions, respectively. As can be seen, each element is
strongly correlated with its spatial and sub-band neigh-
bors. This remarkable statistical feature of the sub-

band representation is imported into our method.

3. Proposed method

3.1 Notations

A scalar variable and a scalar-valued function are de-
noted by a regular typeface. A constant value is de-
noted by a capital case. A 3D tensor, 3D-tensor-valued
function, and their elements are denoted by a sans-serif
typeface. A 4D tensor and its elements are denoted by
a bold sans-serif typeface. A set is denoted by a Greek
letter.

As shown in Figs. 1 and 2, the amplitudes of quan-
tized DCT coeflicients are denoted by a 4D tensor A,
and the true and retrieved signs are denoted by S and

S’, respectively. Figure 4a illustrates the coordinate
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system of A, S, and S’. The width and height of an im-
age are denoted by W and H, respectively. The block
size is fixed to 8 x 8. Frequency indices of the DCT basis
function are denoted by u € [0,8) and v € [0,8). Block
indices are denoted by m € [0, W/8) and n € [0, H/8).
The (u,v)-th element in the (m,n)-th block of A, S,
and S’ is denoted by []u,v.m.n- As shown in Fig. 4b, we
introduce 3D representations of A, S, and S, which are
denoted by A, S, and S, respectively. Their axes are
x, y, and z, and the (z,y, z)-th element is denoted by

Hx,y%

3.2 Sign retrieval via sub-band convolution

To accelerate sign retrieval, we propose a fast method
without the DCT-IDCT iteration, which is summarized
in Fig. 2b. Our method retrieves the signs based on bi-
nary classification machine learning. Because process-
ing 4D tensors as they are requires a large computa-
tional cost, we reshape the 4D amplitudes and signs

into 3D ones, as follows:

Avyz = Au(z)0(z).m(a) n(y) 1)

S:my,z = Su(z),v(z),m(:r),n(y)a (2>
where u(z) = |2/8], v(z) = zmod8, m(x) = x, and
n(y) = y. The amplitudes/signs belonging to the

(u(2),v(z))-th frequency band are packed in the z-th
2D slice, referred to as the sub-band block, and the 3D
tensors contain all the 64 sub-band blocks, as shown in
Figure 3. We simply stack these 64 sub-bands along
the z dimension; consideration of even/odd symmetry
of the DCT kernels might lead to a better method for
handling these sub-bands, but we leave it as the future
work. The effectiveness of the reshaping process will be
demonstrated in Section 4. 2.

We aim to reconstruct the signs S from the 3D am-
plitudes A via binary classification, where each sign is
regarded as a binary label. We implement a binary clas-
sification algorithm using CNNs, which have the capa-
bility to efficiently extract features in A along the spa-
tial and sub-band directions. Table 1 shows the network
architecture of our CNN, where I represents the num-
ber of layers. The Conv-i has a 3D kernel of the size
3 x 3 x C (3 x 3: spatial kernel size and C: the num-
ber of input channels) for each output channel, where
all the channels (frequency sub-bands) can interact to-
gether in each convolution step. The spatial kernel size
3 X 3 in the sub-band domain corresponds to 24 x 24
pixels in the original image domain; thus, a sufficiently

large spatial neighbor is considered in each convolution
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Table 1: Network architecture.

Layer Conv-0 Conv-i Conv-I
Ker. size 3 x3x64 3 x3x 128 3 x3x128
In/out ch. 64/128 128/128 128/63

Act. ReLU ReLU Sigmoid

Input 3D amp. A Conv i —1 Conv I —1

Table 2: Computing environment.

CPU Intel Core i9-13900KF
32 GB
Ubuntu 20.04 LTS

Python 3.10.11 & PyTorch 1.13.1

Main memory
oS

Language & framework

step. Our CNN maps the 3D amplitudes A into a sign
tensor of the size W/8 x H/8 x 63, where the number of
channels, 63, corresponds to the AC components. We
denote the inferred signs by F(A, ©), where © represent
a set of learnable parameters including convolution ker-
nels and biases.

The training procedure is as follows. Let & =
{(A[k],S[k]) : k € [0,K)} be a set of 3D amplitudes

and 3D signs for training, where K denotes the number

of data. We define the empirical risk
r(®,0) =

1 1 Z Z l(Fz,y,z(A[k]’ @)7 Sm,y,z[k])a

WHK 3)
x,y,2 k

where [ is a loss function. We obtain the optimal pa-
rameter, denoted by ) by minimizing the empirical
risk:

O = argmin (P, 0).
e

(4)

The solution to (4) is obtained using the Adam opti-
mizer.

The loss function ! in (3) is defined as follows. Let

1 if Spy.=1

b(Say,2) = ()

0 otherwise

be a zero-one representation of the true sign S%y,z.
We utilize the binary cross-entropy function as the loss

function:

I(Fz,y,2,Se.y,2) = —0(Szy.2) log(Fs y 2)
— (1= b(Ss,y,2))log(l = Fay.2), (6)

where (A,©) of F,, . has been omitted for notation
convenience. If the (z,y, z)-th amplitude is zero, we set
the corresponding loss value to 0.

At the test phase, we obtain the retrieved signs by
thresholding F, , .(A, ©) as follows.
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Fig.5: Recovery rate against execution time.

+1 if F >1/2
Sy = o / (7)
—1 otherwise

Let (m) = m, y(n) = n, and z(u,v) = 8u+v. A 4D
representation of the retrieved signs can be computed
as follows.

S/

uU,v,Mm,n

_ !
- Sw(m)7y(n),z(u,v) (8)
We encode the residuals between the true signs S and

the retrieved ones S', as shown in Fig. 1.

4. Experimental results

4.1 Configuration
For training our CNN, we randomly cropped K =

6,056 images with a size of W x H = 512 x 512 from the
CLIC 2020 dataset [33]. The bit-depth was 8 bits/pixel,
and each pixel value was normalized within the range
0-1. We applied block-wise DCT to the images. We
quantized the DCT coefficients using the quality fac-
tor (QF) of 75. We reshaped the 4D amplitudes and
signs in accordance with (1) and (2); as a result, we
obtained 3D tensors with a size of W/8 x H/8 x 64 =
64 x 64 x 64. We utilized the Adam optimizer with the
learning rate 2 x 10~%. The batch size and the number
of epochs were 256 and 15,000, respectively. We varied
the number of convolution layers I (Table 1) from 2 to

8. For convenience, we refer to the proposed method
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Fig.6: Heat maps of recovery rates for each block.

trained on the above configuration as the sub-band con-
volution method.

To evaluate the effectiveness of the reshaping pro-
cesses in (1) and (2), we employed the following alter-
native approach, referred to as the naive method. We
treated the collection of all amplitudes (or signs) de-
picted in Fig. 4a as a plane with dimensions W x H =
512 x 512. We reconstructed the sign planes from the
amplitude planes, where we nullified the reshaping pro-
cess in the sub-band convolution method. To adapt the
network architecture for planes, we changed the input
channel of Conv-0 and the output channel of Conv-I to
1. For fair comparison, the training process follows the
same configuration as that employed in the sub-band
convolution method.

For evaluation, we sampled 60 images from the
CLIC 2021 dataset [33], which were not included in the
training dataset. The DCT coefficients of the images
were quantized with QFs of 15, 30, 45, 60, 75, and 90.
The signs were retrieved using our methods (sub-band
convolution and naive) and previous methods [7,8,13];
the latter were iterative methods requiring per-iteration
DCT and IDCT (discussed in Section 2.1). For the
previous methods, we changed the maximum number
of iterations from 1 to 200. All the experiments were
conducted on the computing environment in Table 2;
all the methods were executed using the same CPU.

To quantify the accuracy of the retrieved signs, we

define the following recovery rate:

#(correctly retrieved signs of AC coeflicients)
#(signs of AC coefficients) ’

where the signs of DC coeflicients and non-significant
coefficients are excluded. We also measured the execu-

tion time [s] of all the methods for sign retrieval.

4.2 Results
Figure 5 shows recovery rates against execution
times, which were averaged over all blocks in the 60 test

images. The seven points in our method represent re-
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sults for different values of I € [2, 8], while the points in
the previous methods represent results for different iter-
ation counts. For all the QFs, the sub-band convolution
method perfectly outperformed the previous methods
in terms of the recovery rate while achieving the short-
est execution time. Specifically, the execution time for
the maximum recovery rate was 6.74 x 1072 seconds
on average, i.e., 0.93% of 7.24 seconds for the state-
of-the-art method [8]. It is worth noting that the sub-
band convolution method also outperformed the naive
approach, which demonstrates the effectiveness of the
reshaping process.

Remark 1: We report recovery rates for each block to
investigate their biases. We cropped 256 x 256 regions
from the 60 test images and fed amplitudes of their
DCT coefficients (QF 75) into our CNN (I = 8). We
computed the average of recovery rates for each block
and obtained the worst value and the variance over the
60 images. Figure 6 illustrates the results. We observe
that there are clusters of low recovery rates and high

variance values at the boundaries.

Remark 2: For all the methods, the recovery rates
tend to increase as QF decreases. For small QFs, sig-
nificant DCT coefficients are concentrated at the low
frequency bands, which simplifies sign retrieval. There-
fore, all the methods achieved high recovery rates at
small QFs. In contrast, for large QFs, DCT coefficients
are distributed across all the frequency bands, which
increases the difficulty of sign retrieval; all the methods

thus obtained low recovery rates.

5. Conclusion

In this work, we addressed a sign retrieval problem for
the block-wise discrete cosine transformation (DCT):
reconstruction of the signs of DCT coefficients from
their amplitudes. To accelerate sign retrieval, we pro-
posed a fast sign retrieval method without the DCT-
IDCT iteration, where the signs are retrieved based on
binary classification machine learning. We first intro-
duced 3D representations of the amplitudes and signs
and then implemented our method by convolutional
neural networks, which are advantageous for extract-
ing features in the 3D amplitudes. Our future work
will include the extension of our method to the current
state-of-the-art image coding standards, which utilize
variable-size blocks. We also need to consider other
transformations than the DCT, e.g., the discrete sine

transform and low-frequency non-separable secondary
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transform [34]. We believe that this research direction
has the potential to enhance the efficiency of image cod-

ing.
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