Paper

AIRRによる空中像の途切れを視覚的に補完可能とする 複数の再帰反射素子の配置方法

西山 高瑠, 陶山 史朗, 山本 裕紹

要旨 AIRR(retro-reflection by retro-reflection)により、retro-reflectorsのギャップの影響を低減した大型空中撮像を実現するために、空中画像のギャップを視覚的に補完する方法を提案する。画像サイズが大きい場合に複数の再帰反射板から構成されるAIRRは、反射鏡のギャップにより、空中画像のギャップが問題となる。本論文では、レトロ反射板間のギャップの幅と、航空画像全体の知覚を可能にするレトロ反射板の幅を求める方程式を導出する。この式は、視線からレトロ・リフレクターまでの視線距離と距離に依存して、ギャップを補完できるレトロ・リフレクターの最大幅を提供する。

キーワード:空中ディスプレイ,再帰反射による空中結像,再帰反射,両眼視差

まえがき

実世界とディスプレイを融合した技術は、映像やAR/VR技術の発展により、通信機器や看板に利用されている。実世界に表示される画像は、観察者に大きな影響を与え、非常に効果的である。しかし、特殊なガラスは、実世界で表示される画像を一般的なデバイスで見る必要がある。

エアリアルディスプレイは、特殊なメガネをかけずに、空中に浮いている画像を観察できる技術として提案されている。空撮画像の形成には、二面角反射鏡アレイ(DCRA)やマイクロレンズアレイ^{1,2)}に基づく方法がある。空中ディスプレイの一つに、再帰反射による空中イメージング(AIRR)があり、反射によって光源からの光を収束させることで、空中で実像を形成する³⁾。AIRRは視野角が広く、構成の柔軟性が高いという利点がある。構成の柔軟性が高いため、大型の空中ディスプレイが提案されている⁴⁾。

AIRRを用いた様々なアプリケーションが研究されており、空中画像を通して相手を見ることができるシースルーAIRR⁵⁾、センサや高速カメラと組み合わせてタッチレスインタフェースとして利用される^{6,7)}、

カメラで撮影した画像をリアルタイムに表示するビデオ通信デバイス⁸⁾、没入空間での物体形状計測⁹⁾、空中の広い範囲の視点を捉えることができる¹⁰⁾などがある、実空間と鏡面空間¹¹⁾を横切って航空画像を表示するシステム。また、実空間で画像を表示する 機能を活用したステージや劇場での生産にも利用されています^{12,13)}。様々なアプリケーションが検討されているが、空中ディスプレイにはいくつかの問題がある。その一つは、ユーザーが空中画像をタッチ位置を決定できないことである。この問題に対ックを与えたり、視覚フィードバックを与えたりすることが提案されている^{14,15)}。さらに、超音波を用いて空気中の触覚を呈示する技術も提案されている¹⁶⁾

もうひとつは、形成された画像の明るさと解像度の劣化である。これらの問題を解決するために、シミュレーションにより輝度、ぼやけ、可視域を計算し、空中ディスプレイで形成される画像の特徴を解析する方法^{17,18)}や、光学部品に動きを加えたり、特殊な形状を配置したり、ミラーを用いたりして画質を向上させる方法が提案されている^{19,20,21)}。

AIRRの光学的な問題点としては、明るさと解像 度の低下、浮き距離の制限などがある。これら の問題に対する解決策として、光学系に透明な 物体を使用することによる解像度低下の防止²²⁾、 偏光変調の使用による光利用効率の改善²³⁾、

Received June 21, 2024; Revised October 7, 2024; Accepted November 12, 2024

 \dagger Utsunomiya University

(Utsunomiya, Japan)

Paper

Acceptable Arrangement of Multiple Retro-reflectors with a Gap to Visually Complement the Gap of Aerial Image in AIRR

Takeru Nishiyama[†], Shiro Suyama[†] and Hirotsugu Yamamoto[†]

Abstract For realize large aerial imaging by retro-reflection (AIRR) with reduced effect of retro-reflectors gap, we propose a method to visually complement the gap of aerial image. AIRR composed of multiple retro-reflectors for large image size has a problem of the gap in the aerial image due to the reflector gap. In this paper, we derive equations for obtaining the width of the gap between retro-reflectors and the width of the retro-reflectors that enable the perception of the entire aerial image. The equation provides the maximum width of the retro-reflector that can complement the gap depends on the viewing distance and distance from the eye to the retro-reflectors.

Keywords: aerial display, AIRR, retro-reflection, binocular parallax.

1. Introduction

Technology that merges the real world and display is used in communication devices and signage, because of the development of video and AR/VR technologies. Images displayed in the real world have a big impact on observers and are highly effective. However, special glass needs to view the image displayed in the real world in general devices.

Aerial display has been proposed as a technology that enables observers to view images floating in the air without wearing special glasses. Some methods for forming aerial images are based on dihedral corner reflector array (DCRA) or micro-lens array^{1, 2)}. One of the aerial displays is aerial imaging by retro-reflection (AIRR), which forms a real image in the air by converging light from a light source through retro-reflection³⁾. AIRR has the advantages of a wide viewing angle and high flexibility in configuration. Due to the high flexibility in configuration, large aerial displays have been proposed⁴⁾.

Various applications using AIRR have been studied, including see-through AIRR that allows the user to see the other person through an aerial image⁵⁾, used as a touchless interface by combining with a sensor or high-speed camera^{6, 7)}, a video communication device that

displays images taken by a camera in real time8), and object shape measurement in an immersive space9) and capturing wide range of mid-air viewpoints¹⁰⁾, the system displays aerial image across real space and mirrored space¹¹⁾. It's also used in stage and theater productions that take advantage of its ability to display images in real space^{12, 13)}. While a variety of applications are being considered, aerial displays have several problems. One of these is the user cannot determine the touch position of the aerial image when using it as a touchless interface. Solutions to this problem are proposed, such as providing haptic feedback by stimulating the body or visual feedback14, 15). Furthermore, a technique for presenting haptic sensations in the air using ultrasonic waves has also been proposed¹⁶⁾.

The other is the degradation of brightness and resolution of the formed images. To solve these problems, methods have been proposed to analyze the characteristics of images formed by aerial displays by calculating luminance, blur, and visible range through simulation^{17, 18)}, and to improve the quality of images by adding motion to optical components or arranging special shape or using mirror^{19, 20, 21)}.

Optical problems of AIRR include a decrease in the brightness and resolution and a limitation of floating distance. Solutions to these problems have been proposed, such as preventing resolution reduction by using a transparent object in the optical system²²⁾, improving light use efficiency by using polarization

Received June 21, 2024; Revised October 7, 2024; Accepted November 12, 2024

[†] Utsunomiya University

⁽Utsunomiya, Japan)

フレネルレンズの使用による浮遊距離の変更²⁴⁾など が提案されている。

AIRRの問題点の一つは、再帰反射器の使用による解像度の低下である。そのため、テレセントリック・レトロフレクタとマイクロアパーチャ・アレイ^{25,26)}を用いて解像度を向上させる解決策がいくつか提案されている。さらに、大きなAIRRを構築する場合、ビームスプリッタの重量によるたわみにより歪みが生じ、複数のレトロリフレクターを使用すると、レトロリフレクター間のエリアに空撮画像のギャップが発生する。ビームスプリッターの問題に対する解決策として、ビームスプリッターをワイヤーで吊り下げてたわみを補正する方法が提案されている²⁷⁾。レトロ反射の問題に対して、シートを振動させることで隙間を目立たなくする方法が提案されている^{28,29)}。

一方、これまでに提案された再帰反射体の問題 の解は、複数の反射体が互いに取り付けられて おり、反射体間の幅を広げることができないと いう仮定に基づいている。したがって、レトロ 反射鏡は隙間なく正確にタイル状にしなければ ならないが、光学部品の配置の柔軟性は低い。 AIRRを構成する際に再帰反射鏡を隙間に配置し ても、空中映像が知覚できることが明らかにな ると、再帰反射鏡を正確に配置する必要がなく なり、AIRRや再帰反射鏡をスリット状に配置す る光学系を構成する際に必要な再帰反射鏡の数 を減らすなど、タイリングの柔軟性が増すこと になる。我々は、再帰反射ギャップの問題を解 決する方法として、両眼視差に注目した。両眼 視差は立体視の機能の一つであり、人間の目の 位置の違いによって可視画像の位置が異なると いう事実を利用している。

本研究の目的は、両眼視差の影響により隙間の幅が広がった場合でも、複数の再帰反射鏡で構成されるAIRR画像を見るとき、航空画像全体を認識できるという光学設計を明らかにすることである。

セクション2では、複数の再帰反射を用いたAIRR におけるギャップの問題と、ギャップの両眼補足の原理について述べる。第3節では、両眼相補効果が生じることを確認する実験方法と、被験者による予備実験について述べる。セクション4では、立体カメラによる観察結果と、複数の被験者による予備的な実験結果を報告する。

第5節では、結果について議論し、第6節で結論を述べる。

2. 原則

2.1 反射後方反射による空中イメージング(AIRR)

図 1 に本研究で用いた AIRR の原理を示す。 光源から放出された光は、ビームスプリッタ によって反射光と透過光に分割され、反射光 はレトロ反射光に入る。再帰反射光は再びビ ームスプリッターに入り、透過光は光源と対 称な位置で空中像を形成する。

2.2 反射鏡の隙間と両眼の相補性による空中画像 ギャップ

AIRRによる空中画像では、レトロ反射板が視点の延長上にある領域と、空中画像が可視範囲のみである。したがって、複数の再帰反射板を間に隙間をつけて配置した場合、航空画像が見えない領域が存在することになる。

図2は、AIRRによる空中映像の単眼図であり、レトロリフレクターが隙間に配置されている。

まず、図2の赤枠で示した再帰反射板で、航空画像の範囲を見ることができると考える。眼球と再帰反射板の間の領域が見えるので、見える範囲は x_1 から x_2 である。

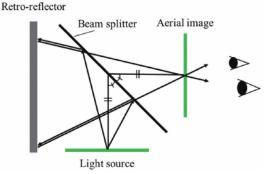


図1 レトロリフレクター(AIRR)による空中撮像の原理。

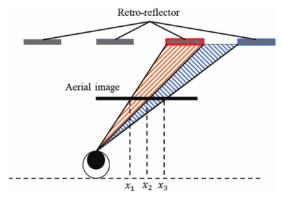


図2 単眼による航空写真の可視領域と不可視領域の範囲。

modulation²³⁾, and changing the floating distance by using a Fresnel lens²⁴⁾.

One of the problems in AIRR is the reduction in resolution caused by using retro-reflector. Therefore, some solutions have been proposed to improve the resolution using telecentric retroreflector and micro aperture arrays^{25, 26)}. Moreover, when constructing a large AIRR, distortion occurs due to the deflection caused by the weight of the beam splitter, and the use of multiple retro-reflectors causes gaps of aerial image in the area between retro-reflectors. A solution to the problem of the beam splitter has been proposed by suspending the beam splitter by a wire to correct the deflection²⁷⁾. For the problem of retro-reflectors, a method of overlapping the sheets and a method of making the gaps less noticeable by vibrating the sheets have been proposed^{28, 29)}.

On the other hand, the solutions to the problem of retro-reflectors proposed so far are based on the assumption that multiple reflectors are placed attached to each other, and the width between reflectors can't be widened. Therefore the retro-reflectors must be tiled precisely with no gaps, and the flexibility of the placement of optical components is low. If it becomes clarified that aerial images can be perceived even with AIRR in which retro-reflectors are placed with gaps, retro-reflectors no longer need to be precisely placed and it will lead to an increase in the flexibility of tiling, such as a reduction in the number of retro-reflectors required when constructing AIRR or an optical system in which retro-reflectors are placed in a slit-shaped configuration. We focused on binocular parallax as a method to solve the problem of retro-reflector gap. Binocular parallax is one of the functions of stereopsis, which uses the fact that the position of the visible image differs depending on the difference in the position of the human eyes.

The purpose of this study is to clarify the optical design that the entire aerial image can be recognized when viewing an AIRR image composed of multiple retro-reflectors, even if the width of the gaps widens due to the effect of binocular disparity.

In Section 2, we describe the problem of gap in AIRR using multiple retro-reflectors and the principle of binocular complementation of the gap. In Section 3, we describe the method of the experiment to confirm that the binocular complementation effect occurs and preliminary experiment by subject. In Section 4, the observation results by use of stereoscopic cameras and preliminary experimental results by several subjects are

reported. In Section 5, we discuss about results and conclude in Section 6.

2. Principle

2.1 Aerial imaging by retro-reflection (AIRR)

Figure 1 shows the principle of AIRR used in this study. Light emitted from the light source is split into reflected and transmitted light by the beam splitter, and the reflected light enters the retro-reflector. The retro-reflected light enters the beam splitter again, and the transmitted light forms an aerial image at a position symmetrical to the light source.

2.2 Aerial image gaps due to retro-reflector gaps and binocular complementation

In the aerial image by AIRR, only the area where the retro-reflectors are on the extension of the viewpoint and the aerial image is the visible range. Therefore, if multiple retro-reflectors are placed with gaps between them, there will be an area where the aerial image is not visible.

Figure 2 shows a monocular view of an aerial image by AIRR with retro-reflectors placed with gaps.

First, consider the range of the aerial image can be seen by the retro-reflector shown in the red frame in Fig. 2. Since the area between the eye and the retro-reflector is visible, the visible range is x_1 to x_2 .

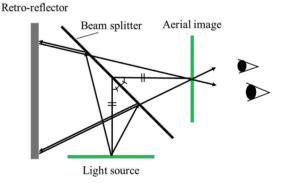


Fig. 1 Principle of aerial imaging by retro-reflector (AIRR).

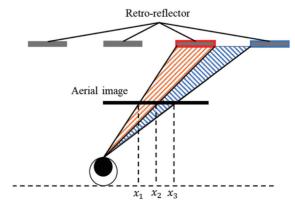


Fig. 2 Range of visible and invisible area of aerial image by monocular.

図3 隙間の小さい航空写真(a)と隙間の大きい航空写真(b)。

次に、赤枠の再帰反射と青枠の再帰反射のずれにより、航空画像が見えなくなる範囲を考えてみましょう。図2より、この範囲の左端はx2、右端はx3である。

2つの再帰反射鏡を小さな隙間でタイル状に並べたときと大きな隙間でタイル状に並べたときの航空写真を単眼カメラ(SONY、DCS-RX100M4)で撮影したものを図3に示す。隙間が小さい場合、航空写真の知覚に大きな影響はない。一方、ギャップが大きいと、空撮画像が見えなくなる領域が大きくなり、知覚に問題が生じる。

前述したように、再帰反射板間のギャップは、航空画像が見えない領域によるものである。一方、両眼視では、retro-reflectorが視点と航空画像の延長線上にある領域が左右目で異なっている。したがって、片方の眼で見えない航空画像の領域がもう片方の眼で見える場合、それぞれの眼は見えない領域を補完し、航空画像全体を知覚することができる。一方の眼の見えない領域と他方の眼の視覚領域はどのように重なり、互いに補完しの視覚領域はどのように重なり、互いに補完したの視覚領域はどのように重なり、互いに補完したの眼でもう片方の眼で補うのに必要な再帰反射をもう片方の眼で補うのに必要な再帰反射をで右目に見える航空写真の面積は、図4からx2~x3である。この範囲は、左目には見えない範囲であり、この場合、

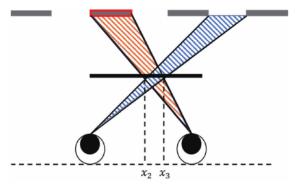


図4 左目による見えない部分の右目補完の原理。

一方の眼から見えない領域をもう一方の眼で見ることができ、航空写真の隙間を両眼視で認識することができる。

2.3 2つの再帰反射器を使用することのギャップ補完

実験では、2つのレトロリフレクターのみを使用した場合の相補性を検証している。このように、視覚的補完のための2つの再帰反射体の間の最大幅と、航空画像全体を見るために必要な再帰反射体の最小幅が観察される。

まず、ギャップの最大幅を計算する。ギャップの最大幅を、補完が成立する可能な最大値に設定した場合の状況を図5に示す。ギャップの最大幅については、空中画像の中心を、両目の反対側にある再帰反射板で見える空中画像の領域に含める必要がある。可能な補集合領域の左端と右端は以下の式を満たす:

$$x_1 = \frac{x_{eye}y_R}{2v_t}, x_2 = x_{eye} - \frac{x_{eye}y_R}{2v_t}$$
 (1)

ここで、 x_1 は可能な補集合領域の右端の横軸、 x_2 は可能な補集合領域の左端の横軸、 x_{eye} は右目の横軸、 y_R は再帰反射の縦軸、 y_I は航空画像の縦軸である。航空画像を正面から見た場合、航空画像の中心は $-x^{eye}$ -であり、 x_1 と x_2 の差は最大補間幅であり、次式を満たす:

$$W_G = \frac{x_{eye}y_R}{y_I} - x_{eye} \tag{2}$$

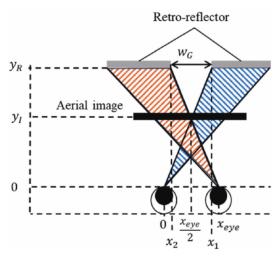


図5 ギャップ幅が最大となったときの両目の再帰反射器配置と可 視領域。



Fig. 3 Aerial image (a) with small gap (b) with large gap.

Next, consider the range where the aerial image is not visible due to the gap between the retro-reflector in the red frame and the blue frame. From Fig. 2, the left end of this range is x_2 and the right end is x_3 .

The aerial images of the two retro-reflectors when they are tiled by a small gap and when they are tiled by a large gap, photographed with a monocular camera (SONY, DCS-RX100M4), are shown in Fig. 3. When the gap is small, there is no significant effect on the perception of aerial images. On the other hand, when the gap is large, the area where the aerial image is not visible becomes large, causing perception problems.

As mentioned above, the gap between retro-reflectors are by the area where the aerial image is not visible. In binocular vision, on the other hand, the area where the retro-reflector is an extension of the viewpoint and aerial image differs between the left and right eye. Therefore, if the area of the aerial image that is not visible in one eye is visible in the other eye, each eye can complement the invisible area and perceive the entire aerial image. How the invisible area of one eye and the visual area of the other eye overlap and complement each other is shown in Fig. 4. Consider the position of the retro-reflector necessary to complement the invisible area in one eye with the other eye. The area of the aerial image visible to the right eye by the retro-reflector shown in the red box is x_2 to x_3 from Fig. 4. This range is the range not visible to the left eye and in this situation,

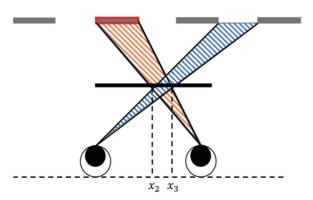


Fig. 4 Principle of right eye complementation of invisible area by left eye.

the area not visible to one eye can be viewed with the other eye, and the gap of the aerial image can be perceived by binocular vision.

2.3 Gap complementation of using two retroreflectors

In the experiment, the complementation when only two retro-reflectors are used is verified. Thus, the maximum width between the two retro-reflectors for visual complementation and the minimum width of the retro-reflectors necessary to see the entire aerial image is observed.

First, calculate the maximum width of gap. The situation when the maximum width of the gap is set to the maximum possible for the completion to be valid is shown in Fig. 5. For the maximum width of the gap, the center of the aerial image must be included in the area of the aerial image visible by the retro-reflector at the opposite of each eye. The left and right ends of the possible complementation area satisfy the following equation:

$$x_1 = \frac{x_{eye}y_R}{2y_I}, x_2 = x_{eye} - \frac{x_{eye}y_R}{2y_I}$$
 (1)

where x_1 is the abscissa of the right end of the possible complementation area, x_2 is the abscissa of the left end of the possible complementation area, x_{eye} is the abscissa of the right eye, y_R is the ordinate of the retro-reflectors, y_I is the ordinate of the aerial image. When viewing the aerial image from the front, the center of the aerial image is $\frac{x_{eye}}{2}$, and the difference between x_1 and x_2 is the maximum complementation width and satisfy the following equation:

$$W_G = \frac{x_{eye}y_R}{y_I} - x_{eye} \tag{2}$$

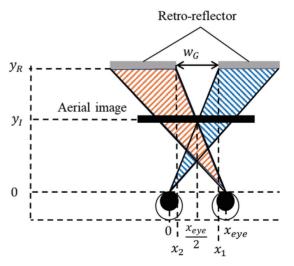


Fig. 5 Retro-reflector placement and visible area for both eyes when the width of the gap is maximum.

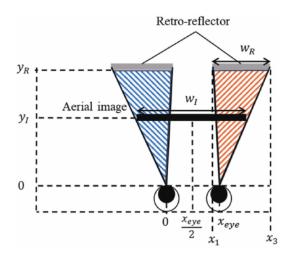


図6 航空写真のエッジが可視域にあるためのレトロリフレクターの 幅

ここで、W_Gは最大相補幅である。次に、航空 画像全体を見るために必要な再帰反射体の最 小幅を計算する。図5では、航空写真の中心 は補完されているが、航空写真の両端は視認 領域から外れている。したがって、図6に示 すように、眼球と同じ側の再帰反射板から見 える航空写真の範囲を考慮する必要がある。 右側の一番右の再帰反射板の座標と必要な再 帰反射板の幅は以下の式を満たす:

$$x_{3} = \frac{y_{R}}{2y_{I}} \left(I_{w} - x_{eye} \right) + x_{eye} \tag{3}$$

$$w_R = \frac{y_R I_w}{2y_I} - \frac{y_R x_{eye}}{y_I} + x_{eye} \tag{4}$$

ここで、 x_3 は右側の一番右の再帰反射板の横軸、 I_W は航空画像の幅、 W_B は再帰反射板の必要な幅である。

式(2)と式(4)から、最大補間幅と必要な再帰反射幅は、航空画像の視聴距離と再帰反射の深度距離に依存することが示される。

3実験方法について

3.1 補完の可能性を検証する

レトロリフレクターの幅と大きさ

式で得られた値が正しいことを確認するために、実験を行った。実験環境を図7に示す。左右の端と中央に縦線が引かれた直線が空中画像として表示されている。ギャップの幅とレトロリフレクターの幅は、レトロリフレクターを黒い段ボールで重ね、立体カメラ(CANDAO, Qoocam EGO)で空中画像を撮影することで変更した。

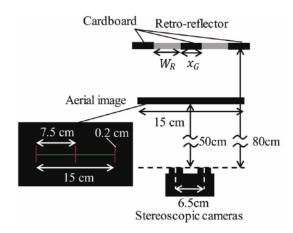


図7 ギャップの幅とレトロリフレクターの幅を特定するための実 験環境。

表 1 ギャップ幅とレトロフレクタを変更した条件。

Conditions	Gap width(x_G) [cm]	Retro-reflector width (W_G) [cm]
Condition 1	3.4	10.8
Condition 2	4.4	10.3
Condition 3	3.4	8.6
Condition 4	3.4	7.6

このカメラは左右のレンズで撮影でき、レン ズ間の距離は6.5cmで、人間の右目と左目の距 離に近い。また、カメラの視野角は、航空画 像を撮影するのに十分であった。25cm角のレ トロフレクタを1つ使用し、観察者が見たよう に中央に配置した。カメラから航空写真まで の距離は50cm、カメラとレトロリフレクター までの距離は80cmであった。これは、航空写 真の典型的な視聴距離に近く、カメラで撮影 したときに線がはっきりと認識できる距離で ある。画像中の赤線の太さは0.2cmであった。 光源は10.1インチ移動式モニター(SEON)、ビ ームスプリッターは30cm角の反射偏光板で透 過軸は0度(日本カーバイド工業)、レトロ反射 板はRFAxでλ /4シート(日本カーバイド工業) である。実験条件下で空中画像を補完できる ギャップの最大幅とレトロリフレクターの最 小幅の理論値は、3.9cmと8.1cmである。実験 は、表 1 に示す 4 つの条件下で行った。1 t

check before and after the theoretical values.

3.2 ギャップの最大許容幅を検証するための被験 者実験

人間の眼で視覚完成が起こりうることを確認するために、被験者実験を行った。

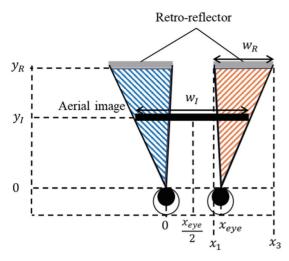


Fig. 6 Width of retro-reflector for the edge of the aerial image to be in visible area.

where W_G is the maximum complementation width.

Next, calculate the minimum width of the retroreflector needed to see the entire aerial image. In Fig. 5, the center of the aerial image is complemented, but both ends of the aerial image are out of the viewing area. Therefore, it is necessary to consider the range of the aerial image that can be seen by the retro-reflectors on the same side as the eye, as shown in Fig. 6. The coordinates of the rightmost retro-reflector on the right side and required width of the retro-reflector satisfy following equation:

$$x_3 = \frac{y_R}{2y_I} (I_w - x_{eye}) + x_{eye} \tag{3}$$

$$w_R = \frac{y_R I_w}{2y_I} - \frac{y_R x_{eye}}{y_I} + x_{eye} \tag{4}$$

where x_3 is the abscissa of the rightmost retroreflector on the right side, I_W is the width of aerial image, W_R is the required width of the retro-reflector.

From equations (2) and (4), it is shown that the maximum complementation width and the required retroreflector width depend on the viewing distance of the aerial image and the depth distance of the retro-reflector.

3. Experiments method

3.1 Verification of possible complementation width and size of retro-reflectors

Experiments were conducted to confirm that the values obtained by the equation were correct. The experimental environment is shown in Fig. 7. Straight line with vertical lines drawn at the left and right edges and at the center displayed as aerial image. The width of the gap and the width of the retro-reflector were changed by overlapping the retro-reflector with a black cardboard, and taking

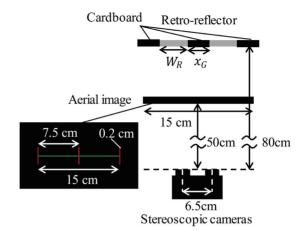


Fig. 7 Experimental environment for identifying the width of the gap and the width of the retro-reflector.

Table. 1 Conditions with changed width of gap and retroreflector.

Conditions	Gap width(x_G) [cm]	Retro-reflector width (W_G) [cm]
Condition 1	3.4	10.8
Condition 2	4.4	10.3
Condition 3	3.4	8.6
Condition 4	3.4	7.6

aerial images by stereoscopic cameras (CANDAO, Qoocam EGO). This camera can capture images with its left and right lenses, and the distance between the lenses is 6.5 cm, which is close to the distance between the human right and left eyes. Also, the viewing angle of the camera was sufficient for capturing aerial images. A single retroreflector of 25 cm square was used and placed in the center as seen by the observer. The distance from the camera to the aerial image was 50 cm, and the distance between the camera and the retro-reflector was 80 cm. This is close to the typical viewing distance for aerial images, a distance at which lines can be clearly perceived when captured by a camera. The thickness of the red line in the image was 0.2 cm. The light source was a 10.1-inch mobile monitor (SEON), the beamsplitter was a reflective polarizer of 30 cm square with a transmission axis of 0 deg (NIPPON CARBIDE INDUSTRIES), and the retro-reflector was RF-Ax with $\lambda/4$ sheet (NIPPON CARBIDE INDUSTRIES). The theoretical values of the maximum width of the gap and the minimum width of the retro-reflector that can complement the aerial image under the experimental conditions are 3.9 cm and 8.1 cm. Experiments were conducted under the four conditions shown in Table. 1 to check before and after the theoretical values.

3.2 Subject experiment to verify max acceptable width of the gap

A subject experiment was conducted to confirm that

次ページが原著論文で、翻訳版と交互に展開されます。機械翻訳のため、誤字や誤訳、翻訳が未反映の部分が含まれている可能性があります。 引用の際には、必ず原著論文の書誌情報をご記載ください。

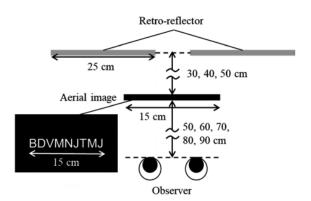


図8 最大許容ギャップ幅を検証するための被験者実験環境。

実験の環境を図8に示す。2つの再帰反射板を配置し、その間の距離を0.5cmから5.0cmまで0.5cm刻みで変化させた。レトロ反射板は25cm四方で、ギャップを観察者の前に置いた。光源は10.1インチ移動式モニター(SEON)、ビームスプリッターは30cm角の反射偏光板で透過軸は0度(日本カーバイド工業)、レトロ反射板はRF-Axでλ /4シート(日本カーバイド工業)である。ランダムな文字列が表示され、被験者はそれを読み、ギャップが補完されているかどうかを判断した。実験は以下の2つの条件で行った。

1画像と再帰反射板との距離は30cmに保 ち、目と画像との距離は50cm、60cm、 70cm、80cm、90cmに変更した。

²目と画像の距離は90cmに保ち、画像と再帰反 射板の距離は30cm、40cm、50cmに変更した。

被験者数は5名で、20代は全員男性であった。左右の平均眼間距離は6.8cmであった。すべての被験者は、実験環境内のすべての視距離と再帰反射距離で、航空画像を見るための視力を持っていた。試行は同じ条件で4回行い、データは文字列が正しく読み取れる最大ギャップ幅の平均値とした。

4結果

表中の条件1で得られた結果を表1に示す。1 の条件 1 での結果を図 9 に示す。画像中央の赤線は右目、左目ともに確認でき、2つの画像間のギャップの位置が異なっている。

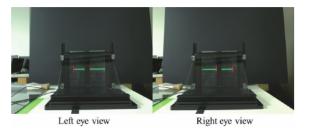


図9 表1の条件1におけるイメージング結果。ギャップを補完する ことができる。

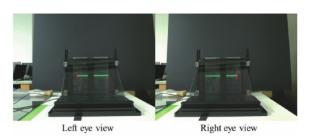


図10 表1の条件2におけるイメージング結果(ギャップを補完する ことができる)。

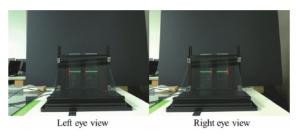


図11 表1の条件3におけるイメージング結果(ギャップを補完することができる)。

このように、両眼の補完が可能である。

表中の条件2のもとで得られた結果を表1に示す。1 の条件 2 の結果を図 10 に示す。画像中央の赤線は 右目、左目ともに見えないが、2つの画像間の隙間の 位置は同じである。したがって、両眼の補足は不可 能である。

表中の条件3で得られた結果 1 を図 11 に示す。画像中央の赤線は右目、左目ともに見えるので、両眼補完が可能である。また、右側の赤線は右の図に、左側の赤線は左側の図に現れている。したがって、両眼視は、観察者が航空画像の片方の端からもう片方の端まで見ることができる。

表中の条件4で得られた結果 1 を図 12 に示す。画像中央の赤線は右目、左目ともに見えるので、両眼補完が可能である。しかし、両端の赤い線は右目でも左目でも見えない。したがって、両眼視でも、航空写真のエッジは見えず、全体の

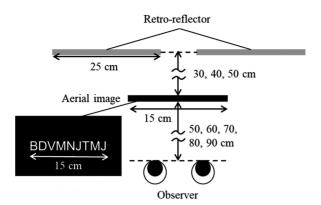


Fig. 8 Subject experimental environment to verify maximum acceptable gap width.

visual completion could occur in the human eye. The environment of the experiment is shown in Fig. 8. Two retro-reflectors were placed, and the distance between them was changed from 0.5 cm to 5.0 cm in 0.5 cm increments. The retro-reflectors were 25 cm square and placed the gap in front of the observer. The light source was a 10.1-inch mobile monitor (SEON), the beamsplitter was a reflective polarizer of 30 cm square with a transmission axis of 0 deg (NIPPON CARBIDE INDUSTRIES), and the retro-reflector was RF-Ax with $\lambda/4$ sheet (NIPPON CARBIDE INDUSTRIES). A random string of text was displayed, and subjects read it to determine if the gap was complemented. The experiment was conducted under the following two conditions.

- 1. The distance between the image and the retroreflectors was kept at 30 cm, and the distance between the eyes and the image was changed to 50, 60, 70, 80, and 90 cm.
- 2. The distance between the eyes and the image was kept at 90 cm, and the distance between the image and the retro-reflectors was changed to 30, 40, and 50 cm.

The number of subjects was five and all subjects were male in 20s. The average distance between the left and right eyes was 6.8 cm. All subjects had visual acuity to see aerial images at all viewing distances and retroreflector distances within the experimental environment. The trials were conducted four times under the same conditions, and the data was the average of the maximum gap width, which the string could be read correctly.

4. Result

The results taken under condition 1 in the Table. 1 is shown in Fig. 9. The red line in the center of the image is visible in both right and left eye views, and the position of the gap between the two images is different.

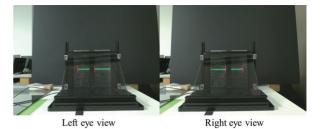


Fig. 9 Results of imaging under condition 1 in Table 1, which can complement the gap.

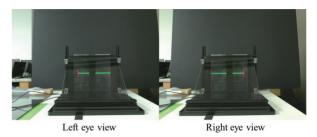


Fig. 10 Results of imaging under condition 2 in Table 1, which can complement the gap.

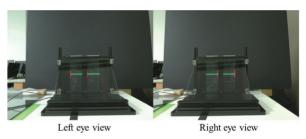


Fig. 11 Results of imaging under condition 3 in Table 1, which can complement the gap.

Thus, binocular complementation is possible.

The results taken under condition 2 in the Table. 1 is shown in Fig. 10. The red line in the center of the image is invisible in both right and left eye views, and the position of the gap between the two images is the same. Thus, binocular complementation is impossible.

The results taken under condition 3 in the Table. 1 is shown in Fig. 11. Since the red line in the center of the image is visible in both right and left eye views, binocular complementation is possible. In addition, the red line on the right side is visible in the right view, and the red line on the left side is visible in the left view. Therefore, binocular vision allows the observer to see from one end of the aerial image to the other.

The results taken under condition 4 in the Table. 1 is shown in Fig. 12. Since the red line in the center of the image is visible in both right and left eye views, binocular complementation is possible. However, the red lines at both ends are not visible from either the right or left eye view. Therefore, even with binocular vision, the edges of the aerial image are invisible and the entire

次ページが原著論文で、翻訳版と交互に展開されます。機械翻訳のため、誤字や誤訳、翻訳が未反映の部分が含まれている可能性があります。 引用の際には、必ず原著論文の書誌情報をご記載ください。

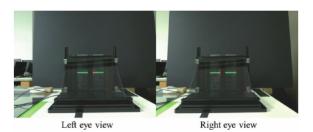


図12表1の条件4におけるイメージング結果(ギャップを補完する ことができる)。

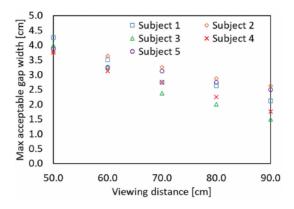


図13 各被験者の視聴距離と最大許容ギャップ幅の関係。

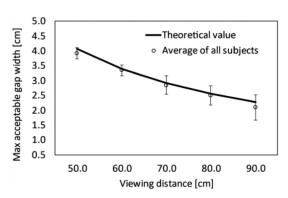


図14 視聴距離と最大許容ギャップ幅の関係に関する全被験者結果の平均値と式(2)による理論値。

のイメージは知覚できない。

これらの結果は、式によって航空画像全体を知覚するためのギャップ幅とレトロフレクタ幅が正しいことを示している。

視聴距離の変化に伴う最大許容ギャップ幅の変化について、各被験者の結果を図13に示す。各被験者の値にはばらつきがあるが、すべての被験者において、視聴距離が短くなるにつれて最大許容ギャップ幅が大きくなる。式(2)の x_{eye} = 6.8 cm, y_I = (50, 60, 70, 80, 90) cm, y_R = $(y_I + 30)$ cmにおける全被験者の結果と相補性の理論値の平均を図14に示す。

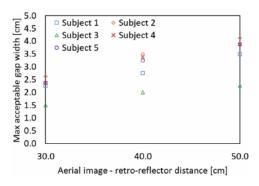


図15 各被験者の再帰反射板の深さ方向位置と最大許容ギャップ幅 の関係。

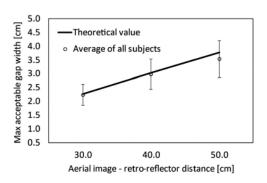


図16 レトロリフレクターの深さ位置と最大許容ギャップ幅 の関係に関する全被験者結果の平均値と式(2)による理論値。

エラーバーは標準誤差である。紐を読み取ることができる最大ギャップ幅は、視距離50cm、60cm、70cm、80cm、90cmの場合、3.9cm、3.4cm、2.9cm、2.5cm、2.1cmである。理論値も同様の傾向を示している。視聴距離が近ければ近いほど、たとえ隙間が広くても、文字列全体がよりよく知覚される。視野位置から空撮画像の位置が短いほど、各眼で見える隙間の位置が空撮画像のエッジに対して近いことを意味する。その結果、どちらの目でも見えない領域が小さくなり、知覚的に補完できる最大ギャップ幅が広くなる。標準偏差は、視聴距離が長くなるにつれて大きくなる傾向があった。弦楽器の最大許容幅のばらつきは、視聴距離が長いほど大きくなった。

図15に、再帰反射の深さが変化したときの最大許容ギャップ幅の変化について、各被験者の結果を示す。被験者によって値にばらつきはあるものの、再帰反射の深さが長くなるにつれて、すべての被験者で最大許容ギャップ幅が大きくなっている。式(2)の $x_{eye}=6.8$ cm, $y_I=90$ cm, $y_R=y_I+(30,40,50)$ cmにおける全被験者の結果と相補性の理論値の平均を図16に示す。

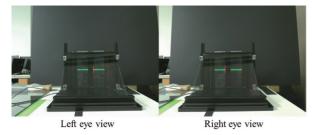


Fig. 12 Results of imaging under condition 4 in Table 1, which can complement the gap.

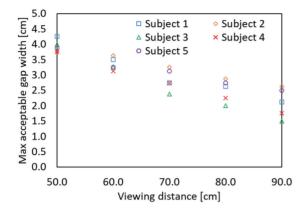


Fig. 13 Relationship between viewing distance and maximum acceptable gap width for each subject.

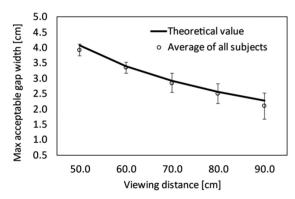


Fig. 14 Average of all subject results and theoretical value by equation (2) of the relationship between viewing distance and maximum acceptable gap width.

image cannot be perceived.

These results show that the gap width and retroreflector width for perceiving the entire aerial image by the equation are correct.

The results for each subject of the change in the maximum acceptable gap width as the viewing distance changes is shown in Fig. 13. Although there are variations in the values for each subject, the maximum acceptable gap width increases as the viewing distance is short for all subjects. The average of the results for all subjects and theoretical values of complementation when $x_{eye} = 6.8 \, cm$, $y_I = (50, 60, 70, 80, 90)$ cm and $y_R = (y_I + 30)$ cm in equation (2) is shown in Fig. 14. Error bars are

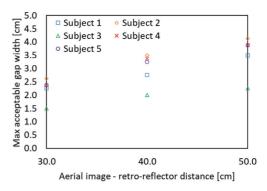


Fig. 15 Relationship between depth position of retro-reflector and maximum acceptable gap width for each subject.

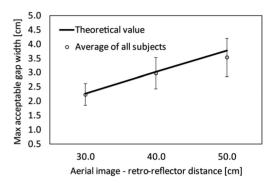


Fig. 16 Average of all subject results and theoretical value by equation (2) of the relationship between depth position of retro-reflector and maximum acceptable gap width.

standard errors. The maximum gap widths in which a string can be read are 3.9, 3.4, 2.9, 2.5, and 2.1 cm for viewing distances of 50, 60, 70, 80, and 90 cm. The theoretical values show a similar trend. The closer the viewing distance, the better the whole string could be perceived even if there were wider gap. The shorter the aerial image position from the viewing position, the closer the location of the gap visible in each eye was relative to the edge of the aerial image. As a result, the invisible area in either eye became smaller, and the maximum gap width that can be perceptually complemented becomes wider. The standard deviations tended to increase with increasing viewing distance. The variation in the maximum acceptable width of the strings was greater when the viewing distance was longer.

The results for each subject of the change in the maximum acceptable gap width as the depth of retroreflector changes is shown in Fig. 15. Although there are variations in the values for each subject, the maximum acceptable gap width increases as the depth of retroreflector is long for all subjects. The average of the results for all subjects and theoretical values of complementation when $x_{eye} = 6.8$ cm, $y_I = 90$ cm, and $y_R = y_I + (30, 40, 50)$ cm in equation (2) is shown in Fig. 16.

エラーバーは標準偏差である。弦読みが可能な最大ギャップ幅は、再帰反射器の深さが30cm、40cm、50cmの場合、2.2cm、3.0cm、3.5cmである。理論値も同様の傾向を示しており、視聴位置から再帰反射位置が遠ければ遠いほど、知覚的に補完できる最大ギャップ幅は広くなる。

これらの結果は、人間の眼球ではギャップの補 完が行われ、許容できるギャップの幅は、視聴 距離と眼球と再帰反射器間の距離に依存するこ とを示している。標準偏差は、航空画像とレト ロリフレクター間の距離が長くなるにつれて大 きくなる傾向があった。弦楽器の最大許容幅の ばらつきは、航空画像とレトロリフレクターの 距離が長いほど大きくなった。

これらの結果は、人間の眼球において、航空画像の両眼補完が誘導されている可能性を示唆している。

5ディスカッション

図15において、被験者3は他の被験者と異なる値を記録している。この被験者にインタビューしたところ、彼は隙間を注視していた。注視位置によって相補性の幅が変化する可能性があり、今後、注視点と相補性の関係を検証する必要がある。実験は5人の被験者で行われ、両眼視が航空画像を補完する可能性を示唆した。今後の課題としては、本実験の信頼性を向上させ、補完の原理を明らかにするために、より多くの被験者を対象とした実験を行うことである。

さらに、この実験では、垂直方向の隙間のみが確認 された。今後は、角度によるギャップについて結果 を検証する必要がある。ギャップの補完は両目の位 置の違いによって起こるので、垂直方向のギャップ 成分のみが補完することができる。したがって、角 度をつけたときに補われるギャップの幅は、以下の 式を満たす:

$$x_{G2} = x_{G1}\cos\theta\tag{5}$$

ここで、 x_{G2} は角度をつけたときに補われる隙間の幅、 x_{G1} は垂直のときに補われる隙間の幅である。 θ は図17に示すようにギャップの角度である。今後の課題として、この式が正しいかどうかを被験者実験により検証する。

さらに、立体視を考慮する必要がある。隙間があっても画像を補完することはできるが、

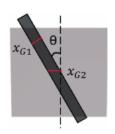


図17 ギャップ角と許容ギャップ幅の関係。

隙間が補完されている部分が見えるのは片目だけである。両眼視差は3次元的に画像を見るために重要であるため、立体視とギャップ補完の関係を検証する必要がある。

また、補完された画像を見る際に、観察者の不 快感を考慮する必要がある。提案手法は、左右 の眼で画像内の異なる位置にギャップが生じる ため、左右の眼で異なる情報を得る必要がある。 したがって、観察者に不快感を与える可能性が あるかどうかを調査する必要がある。特に、こ の不快感は斜めの隙間でより顕著になる可能性 が高く、今後調査する必要がある。

6おわりに

本論文では、航空画像全体の両眼知覚を可能にする再帰反射鏡の配置と幅の式を 提案し、光学系を設計することにより、 この式の有効性を明らかにする。

2つの再帰反射器を使用する場合、見る距離が近く、 見る位置から再帰反射器までの距離が遠いほど、 両眼視で補完できる最大ギャップ幅が広くなる。

両眼補足効果の信頼性を向上させるためには、注視 点やその他の要因を考慮した、さらなる被験者実験 が必要である。

本研究の一部は、日本学術振興会科研費 20H05702 の助成を受けた。

References

- Y. Maeda: "Air Floating Image based on a Dihedral Corner Reflector Array", proc IDW, Vol.26, pp.105-108 (Dec. 2019)
- D. Zhao, B. Su, G. Chen, H. Liao: "360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors", Opt. Express, Vol. 23, pp.9812-9823 (Apr. 2015)
- H. Yamamoto, Y. Tomiyama, S. Suyama: "Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR)", Opt. Express, Vol. 22, pp.26919-26924 (Oct. 2014)
- M. Yasugi, M. Adachi, K. Inoue, N. Ninomiya, S. Suyama, H. Yamamoto: "Development of Aerial Interface by integrating Omnidirectional Aerial Display, Motion Tracking and Virtual

Error bars are standard deviations. The maximum gap widths in which a string can be read are 2.2 cm, 3.0 cm, and 3.5 cm for retro-reflector depths of 30 cm, 40 cm, and 50 cm. The theoretical values show a similar trend, the further the retro-reflector position from the viewing position, the wider the maximum gap width that can be perceptually complemented.

These results show that the complementation of the gap occurs in the human eye and that the acceptable width of gap depends on the viewing distance and the distance between eyes and retro-reflector. The standard deviations tended to increase with increasing distance between the aerial image and retro-reflector. The variation in the maximum acceptable width of the strings was greater when the distance between the aerial image and retro-reflector was longer.

These results suggest that binocular complementation of aerial image may be induced in the human eye.

5. Discussion

In Fig. 15, subject 3 records different values to other subjects. When this subject was interviewed, he was gazing at the gap area. It is possible that the width of complementation may change depending on the gazing position, and it is necessary to verify the relationship between the gazing point and complementation in the future. The experiments were conducted with five subjects, suggesting that binocular vision might complement the aerial image. Our future works include conducting experiments with more subjects in order to improve the reliability of this experiment and to clarify the principle of complementation.

Moreover, in this experiment, only the vertical gap was verified. In the future, it's necessary to verify the results for the gap with angle. Since the complementation of the gap is caused by the difference in the position of the two eyes, only the vertical gap component can complement. Thus, the width of the gap that can be complemented when angled satisfy following equation:

$$x_{G2} = x_{G1}\cos\theta\tag{5}$$

where x_{G2} is the width of the gap that can be complemented when angled, x_{G1} is the width of the gap that can be complemented when vertical. θ is the angle of the gap as shown in Fig. 17. In future work, we will verify this equation is correct through subject experiments.

Moreover, we need to consider the stereoscopic perception. While the image can be complemented even if there is the gap, only one eye can see the area where

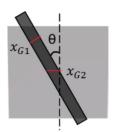


Fig. 17 Relationship between angle of gap and acceptable gap width.

the gap is being complemented. Since binocular parallax is important for viewing images three-dimensionally, it is necessary to verify the relationship between stereoscopic perception and gap complementation.

In addition, it is necessary to consider the discomfort of the observer when viewing the complemented image. Since the proposed method causes gap at different positions in the image for the left and right eyes, it is necessary to get different information for the left and right eyes. Thus, it is necessary to investigate whether this may cause discomfort to the observer. In particular, this discomfort is likely to be more pronounced for the slanted gap, and we should investigate it in the future.

6. Conclusion

In this paper, we propose the equation for the placement and width of retro-reflectors that enable binocular perception of the entire aerial image and clarify the effectiveness of the equation by designing an optical system.

In the case of using two retro-reflectors, the closer the viewing distance and the farther the distance from the viewing position to the retro-reflector, the wider the maximum gap width to complement by binocular viewing.

Further subject experiments are needed to improve the reliability of the binocular complementation effect, taking the gazing point and other factors into consideration.

A part of this research was supported by JSPS KAKENHI Grant Numbers 20H05702.

References

- Y. Maeda: "Air Floating Image based on a Dihedral Corner Reflector Array", proc IDW, Vol.26, pp.105-108 (Dec. 2019)
- D. Zhao, B. Su, G. Chen, H. Liao: "360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors", Opt. Express, Vol. 23, pp.9812-9823 (Apr. 2015)
- H. Yamamoto, Y. Tomiyama, S. Suyama: "Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR)", Opt. Express, Vol. 22, pp.26919-26924 (Oct. 2014)
- M. Yasugi, M. Adachi, K. Inoue, N. Ninomiya, S. Suyama, H. Yamamoto: "Development of Aerial Interface by integrating Omnidirectional Aerial Display, Motion Tracking and Virtual

次ページが原著論文で、翻訳版と交互に展開されます。機械翻訳のため、誤字や誤訳、翻訳が未反映の部分が含まれている可能性があります。 引用の際には、必ず原著論文の書誌情報をご記載ください。

- Reality Space Construction", Journal of Robotics and Mechatronics, Vol.34, 5, pp.1175-1183 (Oct. 2022)
- R. Kakinuma, M. Yasugi, S. Ito, K. Fujii, H. Yamamoto: "Aerial Interpersonal 3D Screen with AIRR that Shares Your Gesture and Your Screen with an Opposite Viewer", IMID2018 DIGEST, p.636 (Aug. 2018)
- 6) M. Yasugi , H. Yamamoto: "Fundamentals and Recent Developments on Aerial Display for Touchless Interface," IMID 2021 DIGEST, p.81 (Aug. 2021)
- M. Ishikawa: "Interactive Display technologies Using High-speed Image Processing", Proc. IDW, Vol.21, pp.812, 813 (Dec. 2014)
- 8) K. Fujii, N. Endo, N. Hagen, M. Yasugi, S. Suyama, H. Yamamoto: Aerial video-calling system with eye-matching feature based on polarization-modulated aerial imaging by retro-refection (p-AIRR)", Opt. Rev., Vol. 29, pp.429-439 (Aug. 2022)
- M. Adachi, M. Yasugi, S. Suyama, H. Yamamoto: "Method of acquiring shapes using motion capture of aerial images formed by large acrylic panels", Opt. Rev., Vol. 30, pp.647-656 (Oct. 2023)
- K. Tsuchiya and N. Kosizumi: "Aerial Imaging by Retro-Reflection for Mid-Air Image Display and Camera Viewpoing Transfer", IEEE Access Vol. 9, pp.25110 -25117(Oct. 2021)
- 11) A. Sano, M. Makiguchi, T. Matsumoto, H. Matsukawa, R. Yamamoto: "Mirror-Transcending Aerial-imaging (MiTAi): An Optical System that Freely Crosses the Boundary between Mirrored and Real Spaces", Proc. SID 2023 DIGEST, pp237-240 (Apr. 2023)
- 12) S. Oku, "VR Noh "GHOST IN THE SHELL" ~Immersive Style Stage Direction Without HMD", Proc. IDW, Vol.30 pp.654-655 (Dec. 2023)
- 13) D. Tasaki, H. Nobori, N. Kohara, K. Iwabuchi, M. Kobayashi, S. Shimomura, R. Ichikawa, T. Nishiyama, S. Hara, S. Suyama, S. Ito, F. Nakayama, J. Tamada, H. Yamamoto: "Aerial Prompter Using AIRR That Allows the Performer and Audience to See the Script From Two Directions at the Same Time", Proc. DHIP 2023, p.62 (Dec. 2023)
- 14) Y. Terao, H. Mizushina, K. Yamamoto: "Evaluation of usability improvement of contactless human interface with visual, auditory and tactile sensation for aerial display", Opt. Rev., Vol. 31, pp.126-133 (Dec. 2023)
- 15) D. Miyazaki, N. Takemura: "Visual Feedback Using Semitransparent Mirror to Enhance Depth Perception of Aerial Image in Floating Touch Display", MTA, Vol. 12, pp.2-8 (Oct. 2023)
- 16) H. Shinoda: "Present and Future of Midair Haptics", Proc. IDW, Vol.24, pp.106-108 (Dec. 2017)
- 17) A. Saito, Y.Yue, N.Koizumi: "Simulating the Appearance of Aerial Images formed by Aerial Imaging by Retroreflection", Opt. Rev., Vol. 31, pp.395-408 (July 2024)
- 18) A. Hoshi, S. Kiuchi, N. Koizumi: "Simulation of mid-air images using combination of physically based rendering and image processing", Opt. Rev., Vol. 29, pp.106-117 (Mar. 2022)
- Y. Yahagi, S. Fukushima, S. Sakaguchi, T. Naemura: "Suppression of floating image degradation using a mechanical vibration of a dihedral corner reflector array", Opt. Express, Vol. 28, pp.33145-33156 (Oct. 2020)
- 20) Y. Yoshimizu, E. Iwase: "Radially arranged dihedral corner reflector array for wide viewing angle of floating image without virtual image", Opt. Express, Vol. 27, pp.918-927 (Jan. 2019)
- 21) K. Shimose, T. Tamamura, R. Tadauchi, H. Kawanishi: "Floating Displays Feature Multiple Optical Functions", Information Display, Vol. 39, pp.16-20 (Nov. 2023)
- 22) K. Takiyama, K. Fujii, M. Yasugi, S. Suyama and H. Yamamoto: "Improved resolution for aerial imaging by retro-reflection with two transparent spheres", Opt. Rev., Vol. 30, pp.123-133 (Jan. 2023)

- 23) K. Onuki, T. Okamoto, S. Onose, M. Nakajima, N. Kawagishi, H. Yamamoto: "Comparisons of Retro-Reflectors for Polarization Modulation in the Aerial Imaging by Retro-Reflection," IMID 2016 DIGEST, p.609 (Aug. 2016)
- 24) S. Sakane, S. Suyama, H. Yamamoto: "Reducing thickness of longdistance aerial display system in AIRR using Fresnel lens", Opt. Rev., Vol. 30, pp.657-663 (Nov. 2023)
- 25) K. Inoue, M. Yasugi, H. Yamamoto, N. Ninomiya: "Improvement of the distortion of aerial displays and proposal for utilizing distortion to emulate three-dimensional aerial image", Opt. Rev., Vol. 29, pp.261-266 (Feb. 2022)
- 26) J. Chen, Y. Zhou, J. Hou, M. Jiang, Y. Li, H. He: "Resolution improvement in aerial imaging by a retro-reflector using micro aperture arrays", applied optics, Vol. 63, No. 3, pp.636-644 (Jan, 2024)
- 27) X. Gao, X. Yu, X. Sang, L. Liu, B. Yan: "Improvement of a floating 3D light field display based on a telecentric retroreflector and an optimized 3D image source", Opt. Express Vol. 29, No. 24, pp.40125-40145 (Nov. 2021)
- 28) K. Fujii, M. Adachi, M. Yasugi, S. Suyama, H. Yamamoto: "Reduction of a Gap in Aerial Image by Overlapping Arrangement of Tiled Retro-reflectors", Proc. 3DSA2022, pp.163-164 (Nov. 2022)
- 29) T. Watanabe, K. Fujii, M. Yasugi, S. Suyama, H. Yamamoto: "Removal of Dark Lines Caused by Tiling of Retro-Reflector in a Large-Scale Aerial Display with AIRR", IMID2023 DIGEST, p.775 (Aug. 2023)

Takeru Nishiyama received his B. E. degrees from Utsunomiya University, Japan in 2024. Currently, he is doing a Master's degree in Utsunomiya University. His research interests include gap complementation of aerial image using multiple retroreflectors and optical design using complementation.

Shiro Suyama received the M.E. degrees from Kyushu University in 1981. Since joining NTT Electrical Communication Laboratories in 1981, he has been engaged in research and development on transistor and liquid-crystal devices. He received the Ph.D. degree from Kyushu University in 1990. He was a Professor at Tokushima University from April 2007 to March 2021 and is currently a Project Professor at Utsunomiya University from April 2021. He is engaged in research on 3D display systems: e.g. DFD (Depthfused 3-D) display, Arc 3D display, Aerial display, Enhancing image reconstruction in Brain, Three-dimensional perceptions and Liquid-crystal devices.

Hirotsugu Yamamoto received the B.E., M.E., and Ph.D. degrees from the University of Tokyo, Tokyo, Japan. After graduation, he joined the Department of Optical Science and Technology at University of Tokushima, Japan. From April 2014, he joined the Center of Optical Research and Education (CORE) at Utsunomiya University, where he is currently a professor at School of Engineering, Utsunomiya University. He has been a project leader for international standardization of aerial display at IEC/TC110 since Oct. 2018, has been the head of the delegates in IEC/TC110 Japan National Mirror Committee, and received IEC1906 Award for his outstanding contribution. In April 2021, he has become a distinguished professor at Utsunomiya University.

- Reality Space Construction", Journal of Robotics and Mechatronics, Vol.34, 5, pp.1175-1183 (Oct. 2022)
- R. Kakinuma, M. Yasugi, S. Ito, K. Fujii , H. Yamamoto: "Aerial Interpersonal 3D Screen with AIRR that Shares Your Gesture and Your Screen with an Opposite Viewer", IMID2018 DIGEST, p.636 (Aug. 2018)
- 6) M. Yasugi , H. Yamamoto: "Fundamentals and Recent Developments on Aerial Display for Touchless Interface," IMID 2021 DIGEST, p.81 (Aug. 2021)
- M. Ishikawa: "Interactive Display technologies Using High-speed Image Processing", Proc. IDW, Vol.21, pp.812, 813 (Dec. 2014)
- 8) K. Fujii, N. Endo, N. Hagen, M. Yasugi, S. Suyama, H. Yamamoto: Aerial video-calling system with eye-matching feature based on polarization-modulated aerial imaging by retro-refection (p-AIRR)", Opt. Rev., Vol. 29, pp.429-439 (Aug. 2022)
- M. Adachi, M. Yasugi, S. Suyama, H. Yamamoto: "Method of acquiring shapes using motion capture of aerial images formed by large acrylic panels", Opt. Rev., Vol. 30, pp.647-656 (Oct. 2023)
- K. Tsuchiya and N. Kosizumi: "Aerial Imaging by Retro-Reflection for Mid-Air Image Display and Camera Viewpoing Transfer", IEEE Access Vol. 9, pp.25110 -25117(Oct. 2021)
- 11) A. Sano, M. Makiguchi, T. Matsumoto, H. Matsukawa, R. Yamamoto: "Mirror-Transcending Aerial-imaging (MiTAi): An Optical System that Freely Crosses the Boundary between Mirrored and Real Spaces", Proc. SID 2023 DIGEST, pp237-240 (Apr. 2023)
- 12) S. Oku, "VR Noh "GHOST IN THE SHELL" ~Immersive Style Stage Direction Without HMD", Proc. IDW, Vol.30 pp.654-655 (Dec. 2023)
- 13) D. Tasaki, H. Nobori, N. Kohara, K. Iwabuchi, M. Kobayashi, S. Shimomura, R. Ichikawa, T. Nishiyama, S. Hara, S. Suyama, S. Ito, F. Nakayama, J. Tamada, H. Yamamoto: "Aerial Prompter Using AIRR That Allows the Performer and Audience to See the Script From Two Directions at the Same Time", Proc. DHIP 2023, p.62 (Dec. 2023)
- 14) Y. Terao, H. Mizushina, K. Yamamoto: "Evaluation of usability improvement of contactless human interface with visual, auditory and tactile sensation for aerial display", Opt. Rev., Vol. 31, pp.126-133 (Dec. 2023)
- 15) D. Miyazaki, N. Takemura: "Visual Feedback Using Semitransparent Mirror to Enhance Depth Perception of Aerial Image in Floating Touch Display", MTA, Vol. 12, pp.2-8 (Oct. 2023)
- 16) H. Shinoda: "Present and Future of Midair Haptics", Proc. IDW, Vol.24, pp.106-108 (Dec. 2017)
- 17) A. Saito, Y.Yue, N.Koizumi: "Simulating the Appearance of Aerial Images formed by Aerial Imaging by Retroreflection", Opt. Rev., Vol. 31, pp.395-408 (July 2024)
- 18) A. Hoshi, S. Kiuchi, N. Koizumi: "Simulation of mid-air images using combination of physically based rendering and image processing", Opt. Rev., Vol. 29, pp.106-117 (Mar. 2022)
- Y. Yahagi, S. Fukushima, S. Sakaguchi, T. Naemura: "Suppression of floating image degradation using a mechanical vibration of a dihedral corner reflector array", Opt. Express, Vol. 28, pp.33145-33156 (Oct. 2020)
- 20) Y. Yoshimizu, E. Iwase: "Radially arranged dihedral corner reflector array for wide viewing angle of floating image without virtual image", Opt. Express, Vol. 27, pp.918-927 (Jan. 2019)
- 21) K. Shimose, T. Tamamura, R. Tadauchi, H. Kawanishi: "Floating Displays Feature Multiple Optical Functions", Information Display, Vol. 39, pp.16-20 (Nov. 2023)
- 22) K. Takiyama, K. Fujii, M. Yasugi, S. Suyama and H. Yamamoto: "Improved resolution for aerial imaging by retro-reflection with two transparent spheres", Opt. Rev., Vol. 30, pp.123-133 (Jan. 2023)

- 23) K. Onuki, T. Okamoto, S. Onose, M. Nakajima, N. Kawagishi, H. Yamamoto: "Comparisons of Retro-Reflectors for Polarization Modulation in the Aerial Imaging by Retro-Reflection," IMID 2016 DIGEST, p.609 (Aug. 2016)
- 24) S. Sakane, S. Suyama, H. Yamamoto: "Reducing thickness of longdistance aerial display system in AIRR using Fresnel lens", Opt. Rev., Vol. 30, pp.657-663 (Nov. 2023)
- 25) K. Inoue, M. Yasugi, H. Yamamoto, N. Ninomiya: "Improvement of the distortion of aerial displays and proposal for utilizing distortion to emulate three-dimensional aerial image", Opt. Rev., Vol. 29, pp.261-266 (Feb. 2022)
- 26) J. Chen, Y. Zhou, J. Hou, M. Jiang, Y. Li, H. He: "Resolution improvement in aerial imaging by a retro-reflector using micro aperture arrays", applied optics, Vol. 63, No. 3, pp.636-644 (Jan, 2024)
- 27) X. Gao, X. Yu, X. Sang, L. Liu, B. Yan: "Improvement of a floating 3D light field display based on a telecentric retroreflector and an optimized 3D image source", Opt. Express Vol. 29, No. 24, pp.40125-40145 (Nov. 2021)
- 28) K. Fujii, M. Adachi, M. Yasugi, S. Suyama, H. Yamamoto: "Reduction of a Gap in Aerial Image by Overlapping Arrangement of Tiled Retro-reflectors", Proc. 3DSA2022, pp.163-164 (Nov. 2022)
- 29) T. Watanabe, K. Fujii, M. Yasugi, S. Suyama, H. Yamamoto: "Removal of Dark Lines Caused by Tiling of Retro-Reflector in a Large-Scale Aerial Display with AIRR", IMID2023 DIGEST, p.775 (Aug. 2023)

Takeru Nishiyama received his B. E. degrees from Utsunomiya University, Japan in 2024. Currently, he is doing a Master's degree in Utsunomiya University. His research interests include gap complementation of aerial image using multiple retroreflectors and optical design using complementation.

Shiro Suyama received the M.E. degrees from Kyushu University in 1981. Since joining NTT Electrical Communication Laboratories in 1981, he has been engaged in research and development on transistor and liquid-crystal devices. He received the Ph.D. degree from Kyushu University in 1990. He was a Professor at Tokushima University from April 2007 to March 2021 and is currently a Project Professor at Utsunomiya University from April 2021. He is engaged in research on 3D display systems: e.g. DFD (Depthfused 3-D) display, Arc 3D display, Aerial display, Enhancing image reconstruction in Brain, Three-dimensional perceptions and Liquid-crystal devices.

Hirotsugu Yamamoto received the B.E., M.E., and Ph.D. degrees from the University of Tokyo, Tokyo, Japan. After graduation, he joined the Department of Optical Science and Technology at University of Tokushima, Japan. From April 2014, he joined the Center of Optical Research and Education (CORE) at Utsunomiya University, where he is currently a professor at School of Engineering, Utsunomiya University. He has been a project leader for international standardization of aerial display at IEC/TC110 since Oct. 2018, has been the head of the delegates in IEC/TC110 Japan National Mirror Committee, and received IEC1906 Award for his outstanding contribution. In April 2021, he has become a distinguished professor at Utsunomiya University.