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Absolute Parallax and Reconstruction Position of Aerial
Image Formed Just Behind Viewing Eyes in Ultra-Wide

Field-of-View Display

Hiroki Takatsuka’, Takumi Watanabe’, Shiro Suyama’,

Munekazu Date' and Hirotsugu Yamamoto®

Abstract A novel display covering entire field of view with image is highly attractive for various application.

This paper proposes to reconstruct an aerial image behind viewing eyes that are different from normal parallax

of convergence side to realize ultra-wide field-of-view. As aerial display has no hardware around aerial image, we

can observe aerial image formed behind the eyes between the display hardware and aerial image. We have

developed a prototype aerial display to form an image just behind viewing eyes using aerial imaging by retro-

reflection (AIRR). Even when aerial image is reconstructed behind viewing eyes, left and right reversed image

with diverged absolute parallax to aerial image can be observed. Furthermore, our proposed method can cover

entire field of view with images.

Keywords: Aerial display, aerial imaging by retro-reflection (AIRR), binocular disparity, field-of-view.

1. Introduction

Aerial display is expected to be widely used for digital
signage because a floating image is displayed in mid-air
without a physical screen. Aerial imaging by retro-
reflection (AIRR) is a method of forming an aerial image?
and many of the aerial display devices developed so far
have been tabletop size, such as aerial depth-fused 3D
display? 3 and omnidirectional aerial display®. The AIRR
tablet, where the 3D high-speed hand tracking was
integrated into the aerial image formed by AIRR, has also
been realized to use aerial display as aerial interface®.
Brightness and resolution of aerial image are problems for
AIRR, but methods to solve these problems in terms of
software® or hardware” 8 have also been proposed. Since
these studies use laptop-sized aerial images with a short
pop-up distance, observations beyond the aerial image
position and closer to the beam splitter needs much
attention and is not suitable for applications.

Recently, an immersive life-size aerial display based
on AIRR has increased the space between the aerial
image and the hardware, which is equipped with motion

capture and enables interactive display®!V and the use
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of Fresnel lenses to increase the floating distance!?. This
immersive aerial display has no need to pay much
attention for closing or moving beyond aerial images,
because this can provide large pop-up distance of aerial
image and no hardware around aerial image. Although it
is known that getting closer to the information screen
makes images larger and covering the entire field of view
with images, the closest distance is limited by our nose.
However, aerial display overcome this hardware
limitation and has a possibility to present information
just around the viewing eyes, even behind eyes, because
aerial display has no hardware around the aerial image.

What kind of images would you observe when the
aerial image is formed behind your head? For example,
when observer stands between the display hardware and
the aerial image, observed aerial image formed just
behind the eyes, which is not possible in daily life. This
aerial image has absolute parallax of a divergence side
unlike the daily convergence side. This observation
method expands the range of applications for aerial
displays and has possibilities for ultra-wide field-of-view.
Our aim of study is to realize a head-up display with an
ultra-wide field-of-viewing angle that can present images
covering the entire windshield area by applying this
observation method.

The purpose of this study is to determine what kind of
image can be observed when the aerial image is

reconstructed behind viewing eyes. Stereoscopic cameras
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is used to capture aerial images, which clarifies that the

aerial image formed behind the observer can be observed.

2. Ultra-wide field-of-view display using
AIRR (Aerial Imaging by Retro-
Reflection)

2.1 Principle of AIRR

Principle of aerial imaging by retro-reflection (AIRR)
is shown in Fig. 1. AIRR consists of a light source, a
beam splitter and a retro-reflector. The light emitted
from the light source goes to the beam splitter and is
split into reflected and transmitted light. The reflected
light goes to the retro-reflector and returns to the beam
splitter again by retro-reflection. Then the light
transmitted through the beam splitter is focused on a
position symmetrical to the light source with respect to
the beam splitter to form an aerial image.

2.2 Principle of ultra-wide field-of-view display

using aerial image

Principle of ultra-wide field-of-view display is shown
in Fig. 2. In the case of normal viewing of an aerial
image as shown in Fig. 2(a), the aerial image floating
between the hardware and the observer can be seen. In
the case of ultra-wide field-of-viewing of an aerial image
as shown in Fig. 2(b), an aerial image is reconstructed
just behind the observer. This situation is not possible in
daily life. In normal viewing with convergence side in
absolute parallax, the left-end rays (blue lines) of the
aerial image appears on the right side of the retina. On
the other hand, in ultra-wide field-of-viewing with
divergence side in absolute parallax, it appears on the
left side of the retina. This leads to observation of an
inverted and diverged image vertically and horizontally.
Its image size on retina become ultra large and the

visual axes of both eyes diverge over the parallelism.

Beam splitter

Aerial image

Observer

[
Retro-reflector

Light source

Fig. 1 Principle of Aerial Imaging by Retro-Reflection (AIRR).

Hardware

Hardware

Aerial’,
image % " j

Field-of-view

Image size(
on retina

1) Image size on retina becomes ultra-
large when the aerial image is
reconstructed just behind the eyes.

2) The visual axes of both eyes
diverge over the parallelism.

3) Itis possible to achieve an ultra-
wide field-of-viewing angle, when
observed close to the hardware

Image size
on retina

(a) Normal viewing of
an aerial image.

(b) Ultra-wide field-of-viewing of
an aerial image.

Fig. 2 Principle of ultra-wide field-of-view display using aerial image.

Moreover, since the lights from aerial display are
converged from the hardware to behind observer,
converged angle of lights is wider when observed close to
the hardware, making it possible to achieve an ultra-
wide field-of-viewing angle. For example, ultra-
immersive viewing produces a field-of-view about 3

times that of the normal viewing!?.

3. Measurement of binocular disparity
and reconstructed image distance from

viewing position

3.1 Experimental method

The optical system used in this study is shown in Fig. 3.
The developed display was based on AIRR. Our prototype
consisted of a flat-panel display (FPD), a beam splitter,
and a retro-reflector. The position of the aerial image was
in plane symmetry of the light source display with respect
to the beam splitter. Unlike Fig. 1, it is see-through
structure. Aerial images were formed in mid-air.
Displayed image and its aerial image are shown in Fig. 4
and 5. The large image was a desired aerial image, and
the small image was an undesired reflection by retro-
reflector. Stereoscopic cameras (FUJI FILM: FINEPIX
REAL 3D W1) was used to capture the aerial images by
changing the viewing position from +400 mm to -300 mm.
The baseline length of both lenses was 77 mm, focal
length was 6.3 mm and image sensor size was 6.2 mm X
4.7 mm. Captured image size was 2048 pixels x 1536
pixels. Binocular disparity was calculated from the

stereoscopic images. Binocular disparity was expressed by

==
D—SXL (1)
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Fig. 3 Our optical system based AIRR. (a) Side view and (b) top

view. Z is the aerial image distance from viewing position.
In ultra-wide field-of-viewing (Z < 0), it is a divergence side
in absolute parallax.

Fig. 4 Displayed image on FPD.

where D was binocular disparity, S was horizontal
captured image size (2048 pixel), L was horizontal image
sensor size (6.2 mm). x was the average of the pixel shift
between the left and right images for the two feature
points in the stereoscopic image as shown in Fig. 5. The

image distance from viewing position was expressed by

BXF
z7=2<

) ()

10

(The small image is a reflection
by retro-reflector)

Fig. 5 Aerial image taken by camera. The large image was a
desired aerial image and the small image was an undesired
reflection by retro-reflector. Two feature points were used

for calculating binocular disparity.

where Z was the image distance from viewing position, B
was baseline length of both lenses and F' was focal length.

3.2 Theoretical values of reconstructed image

distance from viewing position and
binocular disparity

The theoretical values of reconstructed image distance
from viewing position and binocular disparity to be
obtained in this experiment are calculated in Fig. 3(b),
because of the observation of images formed behind the
viewing eyes, which is not possible in daily life. Since the
viewing position is based on the aerial image position,
the viewing position and the image distance from
viewing position are equal. In addition, the relationship
between the image distance from viewing position and
binocular disparity is as in Equation 2. In ultra-wide
field-of-viewing (Z < 0), it is a divergence side in absolute
parallax, unlike the daily convergence side. When Z < 0,
negative binocular disparity is reproduced because B < 0
and F < 0. Negative binocular disparity indicates
divergence side in absolute parallax, left and right

images are inverted and diverged.

4, Results of binocular disparity and
reconstructed image distance from

viewing position

Figure 6 shows the aerial images captured by
stereoscopic cameras at (a) -300 mm, (b) -200 mm, (c)
+200 mm and (d) +400 mm from aerial image position.
Figure 6(a) and 6(b) show aerial images captured at
negative viewing position of ultra-wide field-of-viewing
of an aerial image, i.e. in an unusual viewing position.
The size of the image decreases as the absolute viewing

distance from the aerial image position increases.
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Left image Right image

(a) -400 mm from aerial image position.

Left image Right image
(The small image is a reflection by retro-reflector)

(b) -200 mm from aerial image position.

Left image Right image

(0) +200 mm from aerial image position.

Left image Right image

(d) +400 mm from aerial image position.

Fig. 6 Aerial images captured by stereoscopic cameras at (a) -300
mm, (b) -200 mm, (¢) +200 mm and (d) +400 mm from aerial
image position. At (a) and (b), aerial images captured at
negative viewing position of ultra-wide field-of-viewing of
an aerial image, i.e. in an unusual viewing position. At (c)
and (d), conventional aerial image at positive viewing

position of the normal image.

Moreover, the left image and right image of the
stereoscopic images are reversed against the normal
stereoscopic images as shown in Fig. 6(c) and 6(d). On
the contrary, in conventional aerial image at positive
viewing position of the normal image as shown in Fig.
6(c) and 6(d), the closer the observer gets to the image,
the larger the image size becomes. With our proposed
method, it is possible to observe the aerial image
reconstructed behind the eyes and to realize ultra-wide
field-of-view that cover entire field of view with images.
Also, the image size is larger the closer to the aerial

image position, and if it is formed just around viewing

o
—6 L T T T T T T T
—-400 -300 -200 -100 0
Viewing position (mm)
Fig. 7 Measured binocular disparity and theoretical binocular
disparity. Horizontal axis is viewing position from the
aerial image. Negative values on the vertical axis indicates

11

6 o
Measured value ~—— o

4 -
E
£
~ 2 <
2
®
g0
el
C )
& Theoretical value
E ~
3 -2
o
C
£

—4 4 O

100 200 300 400

divergence side in absolute parallax, left and right images

are inverted and diverged.

T G,
400
Measured value
\ 0

@ 300
8= 200 4
el
@3 100
5
Ea 0
32
g; -100
55
g £ —200

o
o= [¢)
& -300 A )

“~—— Theoretical value
—400 |
—-400  -200 0 200 400

Viewing position (mm)

Fig. 8 Reconstructed image distances from viewing position.
Horizontal axis is viewing position from the aerial image.
Vertical axis is reconstructed image distance from viewing
position by calculating with binocular disparity. Negative
value on vertical axis means that aerial image is formed

behind stereo camera.

eyes, image size is ultra large.

Measured binocular disparity and theoretical binocular
disparity are shown in Fig. 7. The closer to aerial image
plane from positive viewing position to zero, the larger
positive binocular disparity becomes, and is diverged to
positive infinitely at the aerial image plane. On the other
hand, when viewing position pass through the aerial
image position of zero and become negative, the binocular
disparity reverses and becomes negative from negative
infinity. Negative binocular disparity indicates divergence
side in absolute parallax, left and right images are
inverted and diverged for both eyes, which is unusual in
everyday observations. Figure 8 shows result of
reconstructed image distance from viewing position. In
positive viewing position, the aerial image is
reconstructed in front of the stereo camera, but in
negative viewing position, the reconstructed position of

aerial image is calculated to be behind the stereo camera.
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5. Discussion

In Fig. 6, the image size is larger the closer to the
aerial image position. Therefore, a ultra-wide field-of-
viewing angle can be achieved with a smaller displayed
image than in normal viewing. Also, since the field-of-
view of AIRR depends on the size of the beam splitter
and retro-reflector, it is not influenced by using a
smaller display image. Therefore, even a small light
source can achieve an ultra-wide field-of-viewing. Next,
the influence of blurring of the aerial image increases
due to the use of a small display image, but this can be
improved by using a high-resolution technique in which
the ball lens is placed at the virtual conjugate
position14). The error between measured and theoretical
values becomes large when the absolute value of the
viewing position is small. Because of its position close to
the imaging plane, it is considered to be an influence of
measurement error and camera aberration

In Fig. 7, when the aerial image formed behind the
observer is observed, the left and right images are
inverted and diverged, which is not possible in everyday
life. When the image is observed with both eyes, the
displayed image appears double. Therefore, it is necessary
to prepare images to be shown to the left and right eyes,
respectively. For example, by using anaglyph images, we
can observe images in the same way as normal
observation!®- Thus, we believe that stereoscopic

technology can solve the problem of double images.

6. Conclusion

This paper proposed a novel display that reconstructs
an aerial image just behind viewing eyes to realize ultra-
wide field-of-view. We have developed a prototype aerial
display to form an image just behind viewing eyes by
using aerial imaging by retro-reflection (AIRR). Even
when the aerial image is reconstructed behind viewing
eyes, left and right reversed image with diverged
absolute parallax can be observed. Furthermore, our
proposed method can cover entire field of view with
images. This method is promising for new possibilities

for aerial displays, such as one providing an immersive
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sensation with ultra-wide field-of-view.
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