映像情報メディア学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
技報オンライン
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2019-02-20 16:15
[招待講演]Automatic Gaze Correction based on Deep Learning and Image Warping【ICCE2019 報告】
瀬尾昌孝山本敬彦立命館大)・北島利浩サムスン)・陳 延偉立命館大
抄録 (和) When people take a selfie photo or talk through a video chat system, they tend to look at the screen. Since the position of the camera is usually different from that of the screen, the eyes of the person in the photograph or transmitted live video seem to make contact with something other than the viewer. This paper proposes a method to correct the gaze by synthesizing the image texture. The image synthesis uses feature points around the eyes as landmarks. A common convolutional neural network and long-term recurrent convolution network are used to extract or detect these feature points in a still image and video image, respectively. The deep learning-based feature point detections are very accurate compared to conventional methods. These feature points are used as landmarks, and the internal texture of these feature points are synthesized with the prepared template image in advance. Through these procedures, an automatic and natural gaze correction is realized. This method realized a natural gaze correction with little blur, even for a video image. 
(英) When people take a selfie photo or talk through a video chat system, they tend to look at the screen. Since the position of the camera is usually different from that of the screen, the eyes of the person in the photograph or transmitted live video seem to make contact with something other than the viewer. This paper proposes a method to correct the gaze by synthesizing the image texture. The image synthesis uses feature points around the eyes as landmarks. A common convolutional neural network and long-term recurrent convolution network are used to extract or detect these feature points in a still image and video image, respectively. The deep learning-based feature point detections are very accurate compared to conventional methods. These feature points are used as landmarks, and the internal texture of these feature points are synthesized with the prepared template image in advance. Through these procedures, an automatic and natural gaze correction is realized. This method realized a natural gaze correction with little blur, even for a video image.
キーワード (和) 視線補正 / 画像合成 / convolutional neural network / long-term recurrent convolution networks / / / /  
(英) gaze correction / image synthesis / convolutional neural network / long-term recurrent convolution networks / / / /  
文献情報 映情学技報, vol. 43, no. 5, ME2019-47, pp. 255-259, 2019年2月.
資料番号 ME2019-47 
発行日 2019-02-12 (MMS, HI, ME, AIT) 
ISSN Print edition: ISSN 1342-6893    Online edition: ISSN 2424-1970
PDFダウンロード

研究会情報
研究会 ME IEICE-IE IEICE-ITS MMS HI AIT  
開催期間 2019-02-19 - 2019-02-20 
開催地(和) 北海道大学 
開催地(英) Hokkaido Univ. 
テーマ(和) 画像処理および一般 
テーマ(英) Image Processing, etc. 
講演論文情報の詳細
申込み研究会 ME 
会議コード 2019-02-ME-IE-ITS-MMS-HI-AIT 
本文の言語 日本語 
タイトル(和) Automatic Gaze Correction based on Deep Learning and Image Warping【ICCE2019 報告】 
サブタイトル(和)  
タイトル(英) Automatic Gaze Correction based on Deep Learning and Image Warping 
サブタイトル(英)  
キーワード(1)(和/英) 視線補正 / gaze correction  
キーワード(2)(和/英) 画像合成 / image synthesis  
キーワード(3)(和/英) convolutional neural network / convolutional neural network  
キーワード(4)(和/英) long-term recurrent convolution networks / long-term recurrent convolution networks  
キーワード(5)(和/英) /  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) 瀬尾 昌孝 / Masataka Seo / セオ マサタカ
第1著者 所属(和/英) 立命館大学 (略称: 立命館大)
Ritsumeikan University (略称: Ritsumeikan Univ)
第2著者 氏名(和/英/ヨミ) 山本 敬彦 / Yamamoto Takahiro / ヤマモト タカヒロ
第2著者 所属(和/英) 立命館大学 (略称: 立命館大)
Ritsumeikan University (略称: Ritsumeikan Univ)
第3著者 氏名(和/英/ヨミ) 北島 利浩 / Toshihiro Kitajima /
第3著者 所属(和/英) サムスンに本研究所 (略称: サムスン)
Samsung R&D Institute Japan (略称: Samsung)
第4著者 氏名(和/英/ヨミ) 陳 延偉 / Chen Yen-Wei / チン エンイ
第4著者 所属(和/英) 立命館大学 (略称: 立命館大)
Ritsumeikan University (略称: Ritsumeikan Univ)
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者 第1著者 
発表日時 2019-02-20 16:15:00 
発表時間 15分 
申込先研究会 ME 
資料番号 MMS2019-25, HI2019-25, ME2019-47, AIT2019-25 
巻番号(vol) vol.43 
号番号(no) no.5 
ページ範囲 pp.255-259 
ページ数
発行日 2019-02-12 (MMS, HI, ME, AIT) 


[研究会発表申込システムのトップページに戻る]

[映像情報メディア学会ホームページ]


ITE / 映像情報メディア学会