講演抄録/キーワード |
講演名 |
2019-12-20 14:55
深層学習を用いたフォーカルスタックからの深度推定 ○陳 柏卉・高橋桂太・藤井俊彰(名大) |
抄録 |
(和) |
(まだ登録されていません) |
(英) |
Light field theory is a heated topic in computer vision. Focal stack is one of the one of the most significant characteristics of light field. However, in most learning methods, less attention was paid on focal stack. Therefore, we put forward depth estimation of light field image by machine learning method using focal stack. We extract depth information and performed by depth map. In experiment, we use deep neural network and a complete dataset for training, and then make some evaluations. |
キーワード |
(和) |
/ / / / / / / |
(英) |
light field / focal stack / depth estimation / neural network / / / / |
文献情報 |
映情学技報, vol. 43, 2019年12月. |
資料番号 |
|
発行日 |
2019-12-13 (IST, IDY, 3DIT) |
ISSN |
Print edition: ISSN 1342-6893 Online edition: ISSN 2424-1970 |
PDFダウンロード |
|
研究会情報 |
研究会 |
3DMT IDY IST |
開催期間 |
2019-12-20 - 2019-12-20 |
開催地(和) |
NHK名古屋放送局 |
開催地(英) |
NHK Nagoya Station |
テーマ(和) |
立体映像,高臨場感映像一般 |
テーマ(英) |
3D Imaging, Hyper-Realistic Imaging, etc. |
講演論文情報の詳細 |
申込み研究会 |
3DMT |
会議コード |
2019-12-3DIT-IDY-IST |
本文の言語 |
英語(日本語タイトルあり) |
タイトル(和) |
深層学習を用いたフォーカルスタックからの深度推定 |
サブタイトル(和) |
|
タイトル(英) |
Depth from Focal Stack by Deep Neural Network |
サブタイトル(英) |
|
キーワード(1)(和/英) |
/ light field |
キーワード(2)(和/英) |
/ focal stack |
キーワード(3)(和/英) |
/ depth estimation |
キーワード(4)(和/英) |
/ neural network |
キーワード(5)(和/英) |
/ |
キーワード(6)(和/英) |
/ |
キーワード(7)(和/英) |
/ |
キーワード(8)(和/英) |
/ |
第1著者 氏名(和/英/ヨミ) |
陳 柏卉 / Chen Baihui / チン ハクキ |
第1著者 所属(和/英) |
名古屋大学 (略称: 名大)
Nagoya University (略称: Nagoya Univ.) |
第2著者 氏名(和/英/ヨミ) |
高橋 桂太 / Takahashi Keita / タカハシ ケイタ |
第2著者 所属(和/英) |
名古屋大学 (略称: 名大)
Nagoya University (略称: Nagoya Univ.) |
第3著者 氏名(和/英/ヨミ) |
藤井 俊彰 / Fujii Toshiaki / フジイ トシアキ |
第3著者 所属(和/英) |
名古屋大学 (略称: 名大)
Nagoya University (略称: Nagoya Univ.) |
第4著者 氏名(和/英/ヨミ) |
/ / |
第4著者 所属(和/英) |
(略称: )
(略称: ) |
第5著者 氏名(和/英/ヨミ) |
/ / |
第5著者 所属(和/英) |
(略称: )
(略称: ) |
第6著者 氏名(和/英/ヨミ) |
/ / |
第6著者 所属(和/英) |
(略称: )
(略称: ) |
第7著者 氏名(和/英/ヨミ) |
/ / |
第7著者 所属(和/英) |
(略称: )
(略称: ) |
第8著者 氏名(和/英/ヨミ) |
/ / |
第8著者 所属(和/英) |
(略称: )
(略称: ) |
第9著者 氏名(和/英/ヨミ) |
/ / |
第9著者 所属(和/英) |
(略称: )
(略称: ) |
第10著者 氏名(和/英/ヨミ) |
/ / |
第10著者 所属(和/英) |
(略称: )
(略称: ) |
第11著者 氏名(和/英/ヨミ) |
/ / |
第11著者 所属(和/英) |
(略称: )
(略称: ) |
第12著者 氏名(和/英/ヨミ) |
/ / |
第12著者 所属(和/英) |
(略称: )
(略称: ) |
第13著者 氏名(和/英/ヨミ) |
/ / |
第13著者 所属(和/英) |
(略称: )
(略称: ) |
第14著者 氏名(和/英/ヨミ) |
/ / |
第14著者 所属(和/英) |
(略称: )
(略称: ) |
第15著者 氏名(和/英/ヨミ) |
/ / |
第15著者 所属(和/英) |
(略称: )
(略称: ) |
第16著者 氏名(和/英/ヨミ) |
/ / |
第16著者 所属(和/英) |
(略称: )
(略称: ) |
第17著者 氏名(和/英/ヨミ) |
/ / |
第17著者 所属(和/英) |
(略称: )
(略称: ) |
第18著者 氏名(和/英/ヨミ) |
/ / |
第18著者 所属(和/英) |
(略称: )
(略称: ) |
第19著者 氏名(和/英/ヨミ) |
/ / |
第19著者 所属(和/英) |
(略称: )
(略称: ) |
第20著者 氏名(和/英/ヨミ) |
/ / |
第20著者 所属(和/英) |
(略称: )
(略称: ) |
第21著者 氏名(和/英/ヨミ) |
/ / |
第21著者 所属(和/英) |
(略称: )
(略称: ) |
第22著者 氏名(和/英/ヨミ) |
/ / |
第22著者 所属(和/英) |
(略称: )
(略称: ) |
第23著者 氏名(和/英/ヨミ) |
/ / |
第23著者 所属(和/英) |
(略称: )
(略称: ) |
第24著者 氏名(和/英/ヨミ) |
/ / |
第24著者 所属(和/英) |
(略称: )
(略称: ) |
第25著者 氏名(和/英/ヨミ) |
/ / |
第25著者 所属(和/英) |
(略称: )
(略称: ) |
第26著者 氏名(和/英/ヨミ) |
/ / |
第26著者 所属(和/英) |
(略称: )
(略称: ) |
第27著者 氏名(和/英/ヨミ) |
/ / |
第27著者 所属(和/英) |
(略称: )
(略称: ) |
第28著者 氏名(和/英/ヨミ) |
/ / |
第28著者 所属(和/英) |
(略称: )
(略称: ) |
第29著者 氏名(和/英/ヨミ) |
/ / |
第29著者 所属(和/英) |
(略称: )
(略称: ) |
第30著者 氏名(和/英/ヨミ) |
/ / |
第30著者 所属(和/英) |
(略称: )
(略称: ) |
第31著者 氏名(和/英/ヨミ) |
/ / |
第31著者 所属(和/英) |
(略称: )
(略称: ) |
第32著者 氏名(和/英/ヨミ) |
/ / |
第32著者 所属(和/英) |
(略称: )
(略称: ) |
第33著者 氏名(和/英/ヨミ) |
/ / |
第33著者 所属(和/英) |
(略称: )
(略称: ) |
第34著者 氏名(和/英/ヨミ) |
/ / |
第34著者 所属(和/英) |
(略称: )
(略称: ) |
第35著者 氏名(和/英/ヨミ) |
/ / |
第35著者 所属(和/英) |
(略称: )
(略称: ) |
第36著者 氏名(和/英/ヨミ) |
/ / |
第36著者 所属(和/英) |
(略称: )
(略称: ) |
講演者 |
第1著者 |
発表日時 |
2019-12-20 14:55:00 |
発表時間 |
25分 |
申込先研究会 |
3DMT |
資料番号 |
IST2019-62, IDY2019-62, 3DIT2019-37 |
巻番号(vol) |
vol.43 |
号番号(no) |
no.43 |
ページ範囲 |
pp.17-19 |
ページ数 |
3 |
発行日 |
2019-12-13 (IST, IDY, 3DIT) |
|