ITE Technical Group Submission System
Conference Paper's Information
Online Proceedings
[Sign in]
 Go Top Page Go Previous   [Japanese] / [English] 

Paper Abstract and Keywords
Presentation 2022-02-12 10:45
Study on Deep Learning Reconstruction of MRI Complex Images Using Real-value CNN
Itona Fukatsu, Kazuki Yamato, Satoshi Ito (Utsunomiya Univ.)
Abstract (in Japanese) (See Japanese page) 
(in English) Application of compressed sensing has been applied to speed up the data acquisition time for MR imaging. In recent years, research on reconstruction method using deep learning has been actively studied to reduce the reconstruction time and to improve the quality of reconstructed images. Since MR images are complex-value images, CNN needs to deal with complex values. In this study, we propose a new method for reconstructing complex-value images using a real-value CNN by introducing symmetrical signal under-sampling.
Keyword (in Japanese) (See Japanese page) 
(in English) MRI / CNN / image reconstruction / high-speed imaging / / / /  
Reference Info. ITE Tech. Rep., vol. 46, no. 4, ME2022-7, pp. 25-27, Feb. 2022.
Paper # ME2022-7 
Date of Issue 2022-02-05 (ME) 
ISSN Print edition: ISSN 1342-6893    Online edition: ISSN 2424-1970
Download PDF

Conference Information
Committee ME  
Conference Date 2022-02-12 - 2022-02-12 
Place (in Japanese) (See Japanese page) 
Place (in English) online 
Topics (in Japanese) (See Japanese page) 
Topics (in English)  
Paper Information
Registration To ME 
Conference Code 2022-02-ME 
Language Japanese 
Title (in Japanese) (See Japanese page) 
Sub Title (in Japanese) (See Japanese page) 
Title (in English) Study on Deep Learning Reconstruction of MRI Complex Images Using Real-value CNN 
Sub Title (in English)  
Keyword(1) MRI  
Keyword(2) CNN  
Keyword(3) image reconstruction  
Keyword(4) high-speed imaging  
Keyword(5)  
Keyword(6)  
Keyword(7)  
Keyword(8)  
1st Author's Name Itona Fukatsu  
1st Author's Affiliation Ustunomiya University (Utsunomiya Univ.)
2nd Author's Name Kazuki Yamato  
2nd Author's Affiliation Ustunomiya University (Utsunomiya Univ.)
3rd Author's Name Satoshi Ito  
3rd Author's Affiliation Ustunomiya University (Utsunomiya Univ.)
4th Author's Name  
4th Author's Affiliation ()
5th Author's Name  
5th Author's Affiliation ()
6th Author's Name  
6th Author's Affiliation ()
7th Author's Name  
7th Author's Affiliation ()
8th Author's Name  
8th Author's Affiliation ()
9th Author's Name  
9th Author's Affiliation ()
10th Author's Name  
10th Author's Affiliation ()
11th Author's Name  
11th Author's Affiliation ()
12th Author's Name  
12th Author's Affiliation ()
13th Author's Name  
13th Author's Affiliation ()
14th Author's Name  
14th Author's Affiliation ()
15th Author's Name  
15th Author's Affiliation ()
16th Author's Name  
16th Author's Affiliation ()
17th Author's Name  
17th Author's Affiliation ()
18th Author's Name  
18th Author's Affiliation ()
19th Author's Name  
19th Author's Affiliation ()
20th Author's Name  
20th Author's Affiliation ()
Speaker Author-1 
Date Time 2022-02-12 10:45:00 
Presentation Time 15 minutes 
Registration for ME 
Paper # ME2022-7 
Volume (vol) vol.46 
Number (no) no.4 
Page pp.25-27 
#Pages
Date of Issue 2022-02-05 (ME) 


[Return to Top Page]

[Return to ITE Web Page]


The Institute of Image Information and Television Engineers (ITE), Japan