お知らせ ◆映像情報メディア学会における研究会の開催について (新型コロナウイルス関連)2021年7月21日更新
映像情報メディア学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
技報オンライン
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2022-02-22 10:15
Contrastive Self-Supervised Learning Framework for Unsupervised Video Summarization
Xianliang ZhangLi TaoUTokyo)・Xueting WangCyberAgent AI Lab)・Toshihiko YamasakiUTokyo
抄録 (和) (まだ登録されていません) 
(英) The rapid growth of video data aggravates the effort by viewers in exploring informative data. This paper presents a framework based on contrastive learning for unsupervised video summarization to help people to extract important parts in those videos. In contrastive learning, anchor-positive and anchor-negative pairs are usually employed to fulfill learning deep representation from the anchor. In our study, a positive sample by reversing the anchor video is introduced, whose summarization should also be a reversed one. Meanwhile, by destroying temporal relations in the anchor video, the intra-negative video is generated, whose summarization should be quite different from the anchor. Finally, we design our framework to explore the similarity and differences of such samples with the anchor by two proposed summary losses. Experimental evaluations on two benchmark datasets show that our proposed framework surpasses the state-of-the-art unsupervised methods in terms of F-score and correlation coefficients. Without using any annotation, our method can even outperform many supervised methods. We also show that our framework can further enhance the summarization performance by training on large-scale external data that are collected from social networks. Quantitative experiments also show that our method can be integrated into other models with better performance and quicker convergence, indicating the generality of the algorithm.
キーワード (和) / / / / / / /  
(英) contrastive learning / video summarization / large-scale external data / quicker convergence / / / /  
文献情報 映情学技報
資料番号  
発行日  
ISSN Print edition: ISSN 1342-6893  Online edition: ISSN 2424-1970
PDFダウンロード

研究会情報
研究会 AIT ME MMS IEICE-IE IEICE-ITS  
開催期間 2022-02-21 - 2022-02-22 
開催地(和) オンライン開催 
開催地(英) online 
テーマ(和) 画像処理、一般 
テーマ(英)  
講演論文情報の詳細
申込み研究会 IEICE-IE 
会議コード 2022-02-IE-ITS-AIT-ME-MMS 
本文の言語 英語 
タイトル(和)  
サブタイトル(和)  
タイトル(英) Contrastive Self-Supervised Learning Framework for Unsupervised Video Summarization 
サブタイトル(英)  
キーワード(1)(和/英) / contrastive learning  
キーワード(2)(和/英) / video summarization  
キーワード(3)(和/英) / large-scale external data  
キーワード(4)(和/英) / quicker convergence  
キーワード(5)(和/英) /  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) 張 賢亮 / Xianliang Zhang / チョウ ケンリョウ
第1著者 所属(和/英) 東京大学 (略称: 東大)
The University of Tokyo (略称: UTokyo)
第2著者 氏名(和/英/ヨミ) 陶 砺 / Li Tao / タオ リー
第2著者 所属(和/英) 東京大学 (略称: 東大)
The University of Tokyo (略称: UTokyo)
第3著者 氏名(和/英/ヨミ) 汪 雪婷 / Xueting Wang / オウ セッテイ
第3著者 所属(和/英) サイバーエージェント (略称: サイバーエージェント)
CyberAgent AI Lab (略称: CyberAgent AI Lab)
第4著者 氏名(和/英/ヨミ) 山崎 俊彦 / Toshihiko Yamasaki / ヤマサキ トシヒコ
第4著者 所属(和/英) 東京大学 (略称: 東大)
The University of Tokyo (略称: UTokyo)
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2022-02-22 10:15:00 
発表時間 15 
申込先研究会 IEICE-IE 
資料番号  
巻番号(vol) ITE-46 
号番号(no)  
ページ範囲  
ページ数 ITE- 
発行日  


[研究会発表申込システムのトップページに戻る]

[映像情報メディア学会ホームページ]


ITE / 映像情報メディア学会