ITE Technical Group Submission System
Conference Schedule
Online Proceedings
[Sign in]
    [Japanese] / [English] 
( Committee/Place/Topics  ) --Press->
 
( Paper Keywords:  /  Column:Title Auth. Affi. Abst. Keyword ) --Press->

All Technical Committee Conferences  (Searched in: All Years)

Search Results: Conference Papers
 Conference Papers (Available on Advance Programs)  (Sort by: Date Descending)
 Results 1 - 20 of 38  /  [Next]  
Committee Date Time Place Paper Title / Authors Abstract Paper #
MMS, ME, AIT, IEICE-IE, IEICE-ITS [detail] 2023-02-21
10:30
Hokkaido Hokkaido Univ. A Note on Traffic Sign Recognition Based on Vision Transformer Adapter Using Visual Feature Matching
Yaozong Gan, Guang Li, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
Traffic sign recognition is a real-world task that involves many constraints and complications. Traffic sign recognition... [more] MMS2023-1 ME2023-21 AIT2023-1
pp.1-4
MMS, ME, AIT, IEICE-IE, IEICE-ITS [detail] 2023-02-21
10:45
Hokkaido Hokkaido Univ. A Note on Multi-label Image Classification in Animation Illustration Considering Hierarchical Relationships of Attributes
Ziwen Lan, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
This paper presents a multi-label classification of animated illustrations considering the hierarchical relationships of... [more] MMS2023-2 ME2023-22 AIT2023-2
pp.5-9
MMS, ME, AIT, IEICE-IE, IEICE-ITS [detail] 2023-02-21
11:30
Hokkaido Hokkaido Univ. A Note on Accurate Shoot Prediction Considering Players' Spatio-temporal Relations in Soccer Videos -- Introduction of Complete Bipartite Graph Based on Players' Team Information --
Ryota Goka, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
This paper presents the introduction of a complete bipartite graph based on the team information of players for improvin... [more] MMS2023-5 ME2023-25 AIT2023-5
pp.23-28
MMS, ME, AIT, IEICE-IE, IEICE-ITS [detail] 2023-02-21
11:45
Hokkaido Hokkaido Univ. A Note on Improvement of Supervised Latent Variable Model with Graph-Encoded Class Information
Koshi Watanabe, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
Supervised latent variable models aim to estimate a manifold from original data and supervised information, such as clas... [more] MMS2023-6 ME2023-26 AIT2023-6
pp.29-33
MMS, ME, AIT, IEICE-IE, IEICE-ITS [detail] 2023-02-21
15:00
Hokkaido Hokkaido Univ. A Note on Specific Object Removal in Urban Scene Using Video Inpainting Approach
Jiahuan Zhang, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido University)
 [more] MMS2023-14 ME2023-34 AIT2023-14
pp.71-74
MMS, ME, AIT, IEICE-IE, IEICE-ITS [detail] 2023-02-21
16:00
Hokkaido Hokkaido Univ. A note on gaze-dependent image re-ranking for content-based image retrieval
Yuhu Feng, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
 [more] MMS2023-18 ME2023-38 AIT2023-18
pp.89-93
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-21
13:15
Online online A Note on Improvement of Accuracy in Classification of Distress Images for Efficient Inspection of Road Structures -- Introduction of Ratio of Similar Cases Based on Text Data --
Taisei Hirakawa, Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
In this paper, we propose a method for correcting the results of distress image classification using text data recorded ... [more] MMS2022-8 ME2022-33 AIT2022-8
pp.43-48
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-21
16:15
Online online A Note on Realizing Adversarial Defense Based on Regularization of Multi-stage Squeeze-and-Excitation Features
Jiahuan Zhang, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
Regularizing deep features is a common adversarial defense method. However, the existing methods do not further explore ... [more] MMS2022-17 ME2022-42 AIT2022-17
pp.87-90
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-21
17:00
Online online A Note on Interest level Estimation Using Users' Behavior Information -- Validating the Effectiveness of Feature Integration with Multiple Users --
Kyohei Kamikawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
In this paper, we verify the effectiveness of feature integration with multi-user behavior information for interest leve... [more] MMS2022-20 ME2022-45 AIT2022-20
pp.103-107
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-21
13:55
Online online A Note on Multi-label Image Recognition in Anime Illustration Based on Graph Convolutional Networks Using Captioning Features
Ziwen Lan, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
 [more] MMS2022-22 ME2022-47 AIT2022-22
pp.161-165
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-21
14:25
Online online A Note on Visual Sentiment Prediction Based on Few-shot Learning using Knowledge Distillation
Yingrui Ye, Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
The prediction of visual sentiment can be useful to understand users' behaviors. Emotion theories underlying the sentime... [more] MMS2022-24 ME2022-49 AIT2022-24
pp.171-175
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-21
14:40
Online online A Note on Inspection Action Classification Using First and Third Person Video of Engineers Inspecting Bridges
Tsuyoshi Masuda, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
In this paper, we propose an inspection action classification method using first and third person videos of engineers in... [more] MMS2022-25 ME2022-50 AIT2022-25
pp.177-180
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-21
15:05
Online online A Note on Personalized Saliency Prediction Based on User Similarity Considering Object Information in Images
Yuya Moroto, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
This paper presents a personalized saliency map (PSM) prediction method using a small amount of gaze data based on user ... [more] MMS2022-26 ME2022-51 AIT2022-26
pp.181-186
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-21
15:20
Online online A Note on Electron Microscope Image Generation from Mix Proportion and Material Property via Generative Adversarial Network for Rubber Materials
Rintaro Yanagi, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
Estimating the properties of rubber materials from ingredients is necessary to accelerate rubber material development. A... [more] MMS2022-27 ME2022-52 AIT2022-27
pp.187-191
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-22
15:20
Online online A Note on Perceived Visual Content Estimation Based on Compressed Reconstruction Network Using Brain Signals While Gazing on Images
Takaaki Higashi, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido University)
In this paper, we propose a method to reconstruct a perceived image using brain signals obtained during gazing images. S... [more] MMS2022-28 ME2022-53 AIT2022-28
pp.349-353
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-22
16:05
Online online A note on improvement of distress classification using noise barrier images on highway via object detection method
Yun Liang, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
 [more] MMS2022-31 ME2022-56 AIT2022-31
pp.359-363
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-22
16:30
Online online Relevance Analysis between Bio-signals of Engineers Inspecting Subway Tunnels and Their Inspection Behaviors
Kaito Hirasawa, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
This paper presents relevance analysis between bio-signals of engineers inspecting subway tunnels and their inspection b... [more] MMS2022-32 ME2022-57 AIT2022-32
pp.365-370
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-22
16:45
Online online A Note on Accurate Distress Classification Using Deep Learning Considering Confidence in Attention map
Naoki Ogawa, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
This paper presents a note on accurate distress classification using deep learning considering confidence in attention m... [more] MMS2022-33 ME2022-58 AIT2022-33
pp.371-376
AIT, ME, MMS, IEICE-IE, IEICE-ITS [detail] 2022-02-22
17:00
Online online A Note on Distress Detection based on Deep Learning with Hierarchical Multi-Scale Attention Mechanism for Supporting Maintenance of Subway Tunnels
Saya Takada, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
In maintenance of transportation infrastructures, advanced support technologies that can reduce the burden on engineers ... [more] MMS2022-34 ME2022-59 AIT2022-34
pp.377-381
IEICE-IE, IEICE-ITS, MMS, ME, AIT [detail] 2021-02-18
10:20
Online Online A Note on Improving Performance of Deep Learning-based Distress Detection for Supporting Maintenance of Subway Tunnels -- Accuracy Verification Focusing on Tunnel Wall Characteristics --
Tomoki Haruyama, Keisuke Maeda, Ren Togo, Takahiro Ogawa, Miki Haseyama (Hokkaido Univ.)
This paper presents the performance improvement of deep learning-based distress detection to support the maintenance of ... [more] MMS2021-1 ME2021-1 AIT2021-1
pp.1-6
 Results 1 - 20 of 38  /  [Next]  
Choose a download format for default settings. [NEW !!]
Text format pLaTeX format CSV format BibTeX format


[Return to Top Page]

[Return to ITE Web Page]


The Institute of Image Information and Television Engineers (ITE), Japan